
233

Chapter 9:	 Point In Time Copies
(Snapshots)
by Dr. Albrecht Scriba

Overview9.1	
Several tasks, like backups or lengthy data analysis jobs, require a frozen image of
the application data while the application remains online and produces new data.
For instance, reporting needs a stable state of information to generate coherent
and usable data. A data copy must be sent to a testing data center with a speci-
fied time stamp. Or, as another example, you could wish to create backup images
that require a reduced amount of recovery complexity after a restore operation (see
notes below).

Types of Snapshots9.1.1	

Veritas Storage Foundation provides several techniques to create a "frozen image"
copy (also called “snapshot” or "point in time copy") of the current data set with dif-
ferent concepts, advantages, and disadvantages. Some techniques create the snap-
shot on the raw device, i.e. the volume layer, working with all data structures stored
on the device: ufs, vxfs or other file systems, mounted or unmounted, tablespaces on
the raw device itself, and so on. These can be referred to as volume-based snapshots.

V. Herminghaus and A. Sriba, Storage Management in Data Centers,

DOI: 10.1007/978-3-540-85023-6_9, © Springer-Verlag Berlin Heidelberg 2009

234

Point In Time Copies (Snapshots)

On the other side, the Veritas File System contains two mechanisms to create a file system
based snapshot. These are file system-based snapshots, and the correct term in the Veritas
world is "storage checkpoint".

Another way to classify snapshot procedures is by the expression pair physical – logi-
cal. A physical snapshot not only looks like a complete snapshot of all data, it is actually a
complete copy of the data set. The advantage of a physical snapshot is its capability to be
exported to another host without losing its snapshot function. I/O to the snapshot accesses
only the snapshot device, the still running application based on the original device does not
suffer performance degradation from snapshot I/O. On the other hand, as a disadvantage,
the physical snapshot requires storage for a complete copy, and it takes remarkable time
to synchronize its data from the original when created or refreshed.

Application Volume Snapshot Volume

Third
Mirror

Break-Off

Application I/O Snapshot I/O

Physical raw device volume snapshot ("Third Mirror Break-Off")Figure 9-1:

A logical snapshot must simulate a complete snapshot, it only looks like, but it is not a
complete frozen data copy. The underlying technique always combines two ways of access-
ing data through the snapshot. Data still unchanged since the creation of the snapshot are
read from the original device, the snapshot device only points to the corresponding regions
of the original device. In other words: An unchanged data set physically exists only once,
but is accessed by both the original device and the snapshot. If the application wants to
modify its data, the logical snapshot needs to store the original version of the data to be
modified, before the new data set can be written to the application device (this is called
"copy on first write", sometimes “copy before write” or “copy on write”). Apparently, the
logical snapshot needs physical storage as well, but only in an amount sufficient to store
the originals of application data modified since the creation and until the planned destruc-
tion of the snapshot. A logical snapshot therefore serves much better for temporarily lim-
ited tasks, such as backups or data transfers to another location. Furthermore, the concept
of pointers to the original data set when creating a logical snapshot ensures, that the
snapshot is available immediately. Note as a disadvantage of a logical snapshot its ongoing
binding to the original device, snapshot I/Os are in many cases I/Os actually on the original

235

Overview

device degrading application performance, and its physical export to a different host for
offhost processing is impossible.

Snapshot
Read

Application
Read

Snapshot
Write

Di
re

ct
or

Application
Write

Copy on First Write

Application Device Snapshot Device

Logical SnapshotFigure 9-2:

 9.1.2 Consistency Problems for Snapshots

If as the snapshot is taken while the application is running on the original device or file
system, the snapshot does not provide a consistent copy from the application’s point of
view. This is because the snapshot, if it is taken from a live application's file system, is not
fully consistent on its own, but only in combination with the application's internal state
and the file system's buffer cache. But neither application state nor buffer cache become
part of the snapshot. So we would need to either quiesce the application and unmount
the file system, which is not usually desired), or use some magic to fix some or all of the
inconsistencies of the snapshot later.

Two examples will illustrate the point:
If an application is based on a mounted file system, the file system state flag in the

main super block is “active”, signifying that the file system is not “clean” due to data blocks
in the file system cache that have not yet been flushed to persistent storage. If the file
system is not cleanly unmounted (e.g. the system crashes), the “active” state forces a file
system check, otherwise the mount system call will refuse to mount the file system. A raw
device snapshot taken from a mounted file system contains a raw copy of all device data,
so its main super block carries the “active” flag. A file system based snapshot, on the other
side, could perform an (automated) file system check on the snapshot data set after having
created it, because this technique is aware of the existence of the file system. That is the
"magic" we talked about above. But nevertheless, even with a checked snapshot file system,
you only get a “clean” file system data set, not necessarily a clean application data set,

236

Point In Time Copies (Snapshots)

because application write I/Os storing application transactions could consist of several file
system I/Os to different files. A file system snapshot does not know about the application's
internal logic, so it cannot provide any "magic" here. Instead, we must rely on the applica-
tion's ability to recover from a crash.

What does a snapshot have to do with a crash, you may ask? Well, a snapshot of a vol-
ume or file system contains all of the persistent (i.e. the information that has been written
to disk) information about a file system, but none of the transient information (i.e. residing
only in memory). It is in this way is identical to the contents of a file system or volume
that has crashed. (The difference being that even if a snapshot volume contains of several
plexes, these plexes will not need to be resynchronized, which they do in case of a crash.)
Most enterprise applications do provide for safe crash recovery, and for these, using snap-
shots should not be an issue. However, you must still be aware that recovery procedures
must be applied when using a snapshot that was taken from a live file system.

A database using a raw device as storage without an intermediate file system layer
optimizes performance by caching data in a sometimes large memory cache. Those data are
flushed (“checkpointed”) to the raw device from time to time (asynchronous I/O). To avoid
loss of new data created by the last write transactions before a system crash, the database
writes transactions which modify data nearly synchronously in a symbolic manner to a log
device (called the redo-log). A database software that fulfills enterprise needs even in case
of a crash must replay all synchronously stored transactions to the asynchronously flushed
database structure starting from the point of the last database checkpoint.

Now assume a snapshot taken from an online database: the database structure and the
transaction log do not carry the same timestamp, indicating that recovery is needed before
opening the database. Here, too, the database must apply its (crash) recovery procedure to
roll the redo log forward, thus integrating the most recent changes into the database.

To sum up: As long as the snapshot mechanism does not provide full application
awareness including application recovery strategies, it cannot create a consistent snapshot
of the data set of a running application. To actually get a consistent point in time copy, you
must cleanly stop the application and, if based on a file system, unmount it before taking
the snapshot. This limitation is valid under all circumstances: whether using software or
hardware volume management, because they both suffer from the split between transient
information in the kernel and persistent information on disk.

One way to overcome this limitation is to integrate the kernel buffer cache and
application memory into the snapshot layer. This can only be done in a virtualized environ-
ment, in which the snapshot software can – at least theoretically – cooperate with the
virtualization software to flush the relevant memory pages into the snapshot when it is
taken and therefore maintain a higher level of data integrity. But storage management for
virtualized hosts is only evolving now, and there is not much experience available yet.

237

Physical Raw Device Snapshots

Easy
Sailing

Vx

Physical Raw Device Snapshots9.2	

Overview9.2.1	

A physical snapshot requires an extra copy of the volume data or, in terms of VxVM objects,
an extra synchronized plex within the volume. Like all complete plex synchronization pro-
cesses, this means a lot of I/O with system and application performance drawbacks and a
certain amount of time (current hardware does around 1 GB per minute). Repeating that
for every backup every day sounds rather wasteful, and it is.

In order to overcome both the complexities of creating new mirrors and separating
them from their originals, then creating new volume objects

By the time VxVM 4.0 was being developed many new snapshot types and features had
been developed and required elegant integration into the VxVM command structure. One
of the most important older snapshot features (introduced in VxVM 3.2), the DCO (“data
change object”) with its data change log volume to dramatically improve snapback per-
formance (explanation will follow), was made the default for all volume-based snapshots.
Therefore, creation of another volume data copy for snapshot purposes should be prepared
with an associated DCO log volume to get the full snapshot feature set. This is done using
the vxsnap prepare command:

vxsnap -g adg prepare avol [alloc=<disklist>]

We have now added a DCO log volume to our data volume. If we specified the alloc
parameter with a list of storage objects (disks, controllers, enclosures, etc.), VxVM will have
used only those storage objects to place the new DCO log volume's subdisks on.

In addition, VxVM has set some important internal variables to the appropriate values
(e.g. the "fastresync" flag was set to "on"). But a new plex, a new instance of the data, has
not been created yet. To create it, we issue another simple command, the vxsnap addmir

238

Point In Time Copies (Snapshots)

command. This will create, and start synchronisation of, another data plex that can later
be separated from the data volume to live its own life as a snapshot volume:

vxsnap -g adg addmir avol [alloc=<disklist>]

Again, we can specify certain storage objects to place the new subdisks on. Only this
time, because the data plex is allocated the storage allocation controls where the data
plex's subdisks are created rather than the DCO log volume's subdisks.

OK, so now we have a data volume that is prepared for snapshotting by adding a DCO
log Volume and another data plex. Now we can simply turn the data plex into a separate
snapshot volume by "snapping it off" the data volume. This is again just one command,
(albeit with a weird looking parameter, as you will see). To snap a plex off into a snapshot
volume use the vxsnap make command. Here is an example:

vxsnap make source=avol/new=SNAP-avol/plex=avol-03

This creates a volume which is separate from the source volume (source=avol), gives
it the new name SNAP-avol (new=SNAP-avol) using the data plex avol-03 (plex=avol-03).
You can now use that new volume, the SNAP-avol. It contains an exact copy of the data
volume at the very moment the vxsnap make command was run. Be aware that file system
and application data recovery is required which is equivalent to the recovery after a system
crash (see introduction).

At any time you can refresh the contents of the snapshot volume using the
vxsnap refresh command. The most common use for refreshing is to update a snapshot
just before it is backed up. Here's an example for refreshing:

vxsnap refresh SNAP-avol source=avol

All data blocks that have been changed in either the snapshot volume SNAP-avol or
the original volume avol will be read from avol and copied into the appropriate regions in
SNAP-avol by running the vxsnap refresh command.

Because data is copied to the target SNAP-avol at block level (i.e. into the raw device),
it cannot be done while SNAP-avol is mounted, of course. Your file system device driver
will say "thank you for not totally confusing me".

A Look at What Goes 9.2.2	 on Inside

In order to understand snapshots we need to reiterate what happens when we add another
data plex to a mirrored volume. We assume you know what a mirrored volume looks like in
the vxprint output, and start with the added mirror. Here's what you get:
vxassist -g adg [-b] mirror avol [layout=<layout>] [<storage-attributes>]
vxprint -rtg adg avol
[…]
v avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol-01 adg01 0 2097152 0 c1t1d0 ENA

239

Physical Raw Device Snapshots

pl avol-02 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 avol-02 adg02 0 2097152 0 c1t1d1 ENA
pl avol-03 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-01 avol-03 adg03 0 2097152 0 c1t1d2 ENA

Pretty simple and pretty obvious: a third plex was added, along with its subdisk, and
that's it. Theoretically, we could now use the appropriate low-level commands for creating
an empty volume object, and for disassociating the third plex from the original volume
and attaching it into the newly created one. We would thus obtain a new volume initial-
ized with the data contents of the original volume at the time that we disassociated the
third plex. But doing so requires a lot of know-how about creating and handling low-level
objects. So a long time ago Veritas created an easy to use front-end for creating snappable
plexes. We could actually use this now deprecated form of snapshot commands which are
subcommands to vxassist. For completeness, this legacy version will be covered in its own
section later in this chapter. But because its interface and objects were developed over a
long time the concepts are less easy to grasp than they are with the new approach which
uses the new vxsnap command. So let us now jump way ahead in the development of VxVM
and right into the most advanced snapshot mechanism in Volume Manager.

Let's first look at what happens when we prepare a volume for snapshotting:

vxsnap prepare avol
vxprint -rLtg adg avol
[…]
v avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol-01 adg01 0 2097152 0 c1t1d0 ENA
pl avol-02 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 avol-02 adg02 0 2097152 0 c1t1d1 ENA
dc avol_dco avol avol_dcl

v avol_dcl - ENABLED ACTIVE 544 SELECT - gen
pl avol_dcl-01 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg03-01 avol_dcl-01 adg03 0 544 0 c1t1d2 ENA
pl avol_dcl-02 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg01-02 avol_dcl-02 adg01 2097152 544 0 c1t1d0 ENA

This command added some new VxVM objects with funny names. In particular, a tiny
volume was created, with the name avol_dcl. The name DCL stands for "Data Change Log".
It is a log that keeps track of changes to a volume. However it does not store the actual
data but just sets the appropriate bit in a multi-column bitmap corresponding to the region
in the data volume that incurred a change. Because the volume needs to update the DCL
bitmap when it writes, the volume object must contain information pointing to the DCL
volume. This pointer is the "dc" object that was added to the volume (last line of the avol
output).

This sounds rather confusing so let’s draw the output into an image that is probably
easier to understand. We will skip the plex internal structures, i.e. the subdisks. Their group-

240

Point In Time Copies (Snapshots)

ing within the plex is irrelevant for nearly all snapshot features.

Data Change Object (dc)

Data Change Volume

Snapshot prepared application volume with Data Change Log Figure 9-3:
(DCL) volume linked by a Data Change Object (DCO)

OK, again: the application data volume (top) is linked to a very small volume (bottom)
with two plexes. You will not find a device driver for the small volume, it only serves for
VxVM internal purposes and does not contain any application data. Actually it contains
a mirrored multi-column bitmap, which among other things logs regions of the top-level
volume affected by write I/Os. Because each bit position in the multi-column bitmap cor-
responds to a large region in the data volume the plex is drawn as a grid. We will explain
further details of the DCO in the "Full Battleship" and the "Technical Deep Dive" part.

We still need to add another plex to get a volume data instance for the snapshot. The
command vxsnap provides a keyword to add a mirror to both the data volume (top) and DC
log volume (bottom). We used that in the introduction of this chapter and will now look at
what objects are created by it:

vxsnap -g adg addmir avol [alloc=<disklist>]
vxprint -rLtg adg avol
[…]
v avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol-01 adg01 0 2097152 0 c1t1d0 ENA

241

Physical Raw Device Snapshots

pl avol-02 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 avol-02 adg02 0 2097152 0 c1t1d1 ENA
pl avol-03 avol ENABLED SNAPDONE 2097152 CONCAT - WO
sd adg03-02 avol-03 adg03 544 2097152 0 c1t1d2 ENA
dc avol_dco avol avol_dcl

v avol_dcl - ENABLED ACTIVE 544 SELECT - gen
pl avol_dcl-01 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg03-01 avol_dcl-01 adg03 0 544 0 c1t1d2 ENA
pl avol_dcl-02 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg01-02 avol_dcl-02 adg01 2097152 544 0 c1t1d0 ENA
pl avol_dcl-03 avol_dcl DISABLED DCOSNP 544 CONCAT - RW
sd adg02-02 avol_dcl-03 adg02 2097152 544 0 c1t1d1 ENA

Application and DC log volume simply acquired another plex. Furthermore, note the
difference in the application state (SNAPDONE) and in the access mode of the new top-
level volume plex (WO = write-only) compared to the standard vxassist mirror command
above. SNAPDONE only means, that the plex is marked for snapshot, its write-only access
does not modify the regular read policy of the volume. The corresponding DC log volume
plex is in DISABLED kernel state (no I/O possible, explanation see below in the latter sec-
tions of this chapter) and DCOSNP state, which marks the plex in the same manner as the
SNAPDONE state of the top-level volume plex for snapshot purposes.

242

Point In Time Copies (Snapshots)

ENABLED
SNAPDONE

(WO)

DISABLED
DCOSNP

(RW)

Snapshot Prepared Application Volume with Data Change Log Figure 9-4:
Volume and Third Mirror

Currently the snapshot plex is still a full member of the volume except for read access
from the plex being prohibited – the snapshot plex remains WO, or write-only. But its data
changes synchronously with the other plexes. In other words: This plex is still live, it is not
yet a snapshot but is only prepared to become a snapshot. To actually create the snapshot,
to split it from the data volume, we need to enter a somewhat weird-looking command (we
will explain the strange slash-separated parameter syntax later):

vxsnap -g adg make source=avol/new=SNAP-avol/plex=avol-03
vxprint -rLtg adg
[…]
v SNAP-avol - ENABLED ACTIVE 2097152 ROUND - fsgen
pl avol-03 SNAP-avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-02 avol-03 adg03 544 2097152 0 c1t1d2 ENA
dc SNAP-avol_dco SNAP-avol SNAP-avol_dcl

v SNAP-avol_dcl - ENABLED ACTIVE 544 ROUND - gen
pl avol_dcl-03 SNAP-avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg02-02 avol_dcl-03 adg02 2097152 544 0 c1t1d1 ENA
sp avol_snp SNAP-avol SNAP-avol_dco

243

Physical Raw Device Snapshots

v avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol-01 adg01 0 2097152 0 c1t1d0 ENA
pl avol-02 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 avol-02 adg02 0 2097152 0 c1t1d1 ENA
dc avol_dco avol avol_dcl

v avol_dcl - ENABLED ACTIVE 544 SELECT - gen
pl avol_dcl-01 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg03-01 avol_dcl-01 adg03 0 544 0 c1t1d2 ENA
pl avol_dcl-02 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg01-02 avol_dcl-02 adg01 2097152 544 0 c1t1d0 ENA
sp SNAP-avol_snp avol avol_dco

We already know that an easy understanding of snapshots at a glance is quite difficult.
But once again, drawing an image based on the disturbing ASCII command output does
help indeed. What happened when we split the snapshot from the data volume was this:

ENABLED
ACTIVE
(RW)

ENABLED
ACTIVE
(RW)

Snap
Objects

(sp)

Data Change Object (dc)

Data Change Volume

Application Volume with Split Snapshot VolumeFigure 9-5:

Both plexes, the data plex (top) and the DC log volume plex formerly marked as
SNAPDONE and DCOSNP respectively, have been broken off from their original volumes.
They both changed their state to ACTIVE. Additionally the data plex changed to read-write
access mode (RW) and the DC log plex changed its kernel state to ENABLED. Each was

244

Point In Time Copies (Snapshots)

wrapped into a volume object. This was done to add application access to the snapshot
volume (there are now device drivers for SNAP-avol in the /dev/vx/[r]dsk/adg directory)
or to form a DC log volume. The DC log volume is linked to the snapshot data volume by a
new DC object called SNAP-avol_dco (<snapvol>_dco in general) in the same manner we
already mentioned for the running application volume. And finally, both data volumes are
cross-linked by snap objects (type “sp” in the first column of the vxprint output) to enable
the snapback procedure: the snapshot volume together with its associated DC log volume
turns back into a synchronized member of the running application volume for further
snapshot tasks (see the "Full Battleship" section below).

Note that without specifying storage attributes the snapshot volume and its associ-
ated DC log use subdisks placed on two different disks (here adg02 and adg03) and that the
remaining original volume uses some of these disks as well (adg02 and adg03). This makes
offhost snapshots impossible, as will be explained in the "Full Battleship" section.

The snapshot volume can be used just like any standard application volume: it can be
mounted, accessed by another instance of the application, and so on. Its associated DC log
volume ensures that write access to the snap volume is tracked and considered when snap-
ping it back to the original volume or when refreshing the snapshot (any region that was
modified in either the snapshot or the data volume needs be resynchronized). But snapping
back and refreshing snapshots will be covered in the "Full Battleship" section.

To conclude with the main features of the volume based raw device snapshot mecha-
nism:

1.	 The snapshot copy is physically spoken completely independent from the original
device, thus snapshot I/O does not degrade application performance, and offhost
processing is possible.

2.	 The snapshot can be accessed in read-write mode (will be explained later).

3.	 The snapshot can be used for immediate recovery of both, corrupted application data
and physically damaged devices (explained later).

4.	 The snapshot technique is independent from the data structure (e.g. file system) on
the device.

5.	 The snapshot function is protected against application and system crashes or disk
group deports and imports (details worked out later).

6.	 The snapshot requires the storage for a complete copy of the original device.

7.	 Data must be completely synchronized or resynchronized before the snapshot can be
created. This can take a business critical amount of time.

vxsnap's Weird Syntax
We promised earlier that we would explain the funny syntax on the vxsnap command line.
Remember we had to cope with commands like this:

vxsnap make source=avol/new=SNAP-avol/plex=avol-03

You may have thought "what were the developers smoking?" (or even: "I want some of
the same stuff"!). But that would not be fair. They were actually being very smart people.

245

Physical Raw Device Snapshots

You see, creating a snapshot of a volume is easy, and would not require such funny slash-
separated 3-tuples. However, what if you need to create snapshots of a great number of
volumes, and they all need to be consistent with each other? You cannot rely on many
snapshot commands simply executing in rapid succession and hope that there will be no
inconsistencies. That would be totally inacceptable from an enterprise perspective.

Veritas' solution to this problem is to make the vxsnap command accept multiple snap-
shot volume source and destination tuples (triples in this case). Then, when the command
is executed, they all snap at precisely the same point in time. In this case, consistency is
guaranteed rather than approximated. While the cost of this approach is merely an atypical
parameter format, its benefit is immeasurable.

A Logical File System Snapshot9.2.3	

Another snapshot technique with a mostly inverted set of features compared to the above
mentioned procedure is worth being explained in the Easy Sailing section: the legacy VxFS
snapshot. It belongs to an older concept of snapshots and is not generally used in Veritas
installations any more because VxFS offers vastly superior approaches today. However,
most other common snapshots use a very similar concept. E.g. Solaris UFS snapshots or
MS-Windows file system snapshots work on the same basis as the legacy snapshot file
systems discussed here. They all share the huge drawback that they are not crash-proof,
i.e. if the system holding the snapshot incurs a fault and crashes, the snapshot is lost and
a new snapshot must be taken. While this does not sound too bad, keep in mind that this
also means there is no way of ever getting the exact state of the file system back that we
had at the time the snapshot had been initialized. This may well be a show-stopper for an
enterprise evaluating snapshot mechanisms!

The technique is not only bound to the file system driver code, it is also a so-called
logical snapshot, that is, unchanged data remains stored on the original device and is
accessible by both the original device driver and the snapshot driver. Data that has been
written, however, is first copied to the snapshot and subsequently overwritten on the
original device. The snapshot device itself does not contain a complete file system, but just
references: to the original data for all unchanged regions and to its own data store for the
blocks that have been saved from the original before they were overwritten.

The physical snapshot device must provide storage capacity only for the originals of
modified data (10% per day are sufficient in most cases).

As a data store for the snapshot file system you can use any device appropriate to serve
as a base for VxFS (such as logical volumes of other software manufacturers, partitions,
USB sticks, even RAM disks). Nevertheless, for our convenience in a Storage Foundation
book, we choose Veritas volumes in the following explanation and demonstration.

First, we create the original device and file system, mount the latter and place a
scratch file on it:

vxassist make avol 1g layout=mirror init=active
mkfs -F vxfs /dev/vx/rdsk/adg/avol
 version 7 layout
 2097152 sectors, 1048576 blocks of size 1024, log size 16384 blocks

246

Point In Time Copies (Snapshots)

 largefiles supported
mount -F vxfs /dev/vx/dsk/adg/avol /mnt
mkfile 10m /mnt/file0.10m

In order to create a VxFS snapshot, we need a considerably smaller cache device (we
choose 10% of the original device, less than 5% are not supported). By mounting it with
the special option -o snapof=<original-blockdevice>|<original-mountpoint>, we are
telling the VxFS device driver to initialize the appropriate data structures and establish the
snapshot; we do not need to place a VxFS on it before.

vxassist make cacheavol 100m layout=mirror init=active
mkdir /mnt_snap

Create the snapshot by using the original block device:

mount -F vxfs -o snapof=/dev/vx/dsk/adg/avol \
 /dev/vx/dsk/adg/cacheavol /mnt_snap

Or, by using the original mount point (the result is identical):

mount -F vxfs -o snapof=/mnt /dev/vx/dsk/adg/cacheavol /mnt_snap
df -k /mnt*
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/adg/avol 1048576 27989 956808 3% /mnt
/dev/vx/dsk/adg/cacheavol
 1048576 27989 956801 3% /mnt_snap
ls -lA /mnt*
/mnt:
total 20480
-rw------T 1 root root 10485760 Sep 6 18:04 file0.10m
drwxr-xr-x 2 root root 96 Sep 6 17:57 lost+found

/mnt_snap:
total 20480
-rw------T 1 root root 10485760 Sep 6 18:04 file0.10m
drwxr-xr-x 2 root root 96 Sep 6 17:57 lost+found

As you can see, the original file system and its associated snapshot exactly look like
two independent file systems on the surface. Do they also behave like independent file
systems? Let’s play a little bit:

mkfile 10m /mnt/file1.10m
df -k /mnt*
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/adg/avol 1048576 38229 947207 4% /mnt
/dev/vx/dsk/adg/cacheavol
 1048576 27989 956801 3% /mnt_snap

247

Physical Raw Device Snapshots

ls -lA /mnt*
/mnt:
total 40960
-rw------T 1 root root 10485760 Sep 6 18:04 file0.10m
-rw------T 1 root root 10485760 Sep 6 18:07 file1.10m
drwxr-xr-x 2 root root 96 Sep 6 17:57 lost+found

/mnt_snap:
total 20480
-rw------T 1 root root 10485760 Sep 6 18:04 file0.10m
drwxr-xr-x 2 root root 96 Sep 6 17:57 lost+found
rm /mnt/file0.10m
df -k /mnt*
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/adg/avol 1048576 27989 956808 3% /mnt
/dev/vx/dsk/adg/cacheavol
 1048576 27989 956801 3% /mnt_snap
ls -lA /mnt*
/mnt:
total 20480
-rw------T 1 root root 10485760 Sep 6 18:07 file1.10m
drwxr-xr-x 2 root root 96 Sep 6 17:57 lost+found

/mnt_snap:
total 20480
-rw------T 1 root root 10485760 Sep 6 18:04 file0.10m
drwxr-xr-x 2 root root 96 Sep 6 17:57 lost+found
rm /mnt_snap/file0.10m
rm: /mnt_snap/file0.10m: override protection 600 (yes/no)? yes
rm: /mnt_snap/file0.10m not removed: Read-only file system
rm -f /mnt_snap/file0.10m
ls -lA /mnt_snap
total 2048
-rw------T 1 root root 10485760 Sep 6 18:04 file0.10m
drwxr-xr-x 2 root root 96 Sep 6 17:57 lost+found

Ok, as long as the snapshot file system is accessed in read mode, it seems to behave like
an independent file system (we will see another exception below). Write access is blocked
(the override question is misleading, the “force” option when removing a file always sup-
presses STDERR).

Once again, we conclude with the main features of the VxFS snapshot. Compared with
the former conclusion to the physical raw device snapshot, the ordinals do correspond.

1.	 The logical snapshot copy is physically dependent on the original file system, thus
degrading application performance: snapshot read I/Os on unchanged data are read
from the original file system, and write I/Os on still unmodified data on the original
file system force a copy-on-first-write. Offhost processing is not possible.

248

Point In Time Copies (Snapshots)

2.	 The logical snapshot can only be accessed in read-only mode.

3.	 The logical snapshot can be used for immediate recovery only of corrupted applica-
tion data, not in case of physically damaged devices (explained later).

4.	 The logical snapshot method is bound to VxFS.

5.	 The logical snapshot function is destroyed after an unmount of the snapshot file
system, even more in case of a system crash.

6.	 The logical snapshot requires, compared to the original device, only a small portion
of storage.

7.	 No preparatory data synchronization is necessary (instead copy-on-first-write after
snapshot creation), the logical snapshot is available immediately.

249

Features of and Improvements on the Raw Device Snapshot

The Full Battleship

Features of and Improvements on the Raw 9.3	
Device Snapshot

Snapshot Region Logging by the Data Change Log9.3.1	

In the Easy Sailing section, we just described the structure of a volume prepared for a
raw device snapshot (especially the Data Change Object “DCO” and the Data Change Log
Volume “DCL”). But we did not explain, why we need all these strange objects to perform
a snapshot operation. Actually, the vxsnap make command would fail without those addi-
tional objects. But, on the other side, the "Technical Deep Dive" section will indeed show a
quite simple procedure to create a snapshot based only on a current data plex within the
volume, thus without any further objects, logs, and so on, neither as VxVM objects nor as
kernel structures. So why all this complicated DC stuff?

An intelligent snapshot mechanism should provide an optimized framework to serve
tasks more elaborate than simply creating a frozen copy, using it once and then deleting or
forgetting it completely. Some examples should illustrate that:

A snapshot could be used regularly, e.g. on a daily basis for backup purposes. Indeed,
we could delete today’s snapshot after having it used and recreate it completely from
scratch tomorrow. But that would require full data synchronization every time the snapshot
is created. Two major disadvantages readily come to mind: (1) the snapshot is never avail-
able immediately, and (2) we have an awful amount of unnecessary synchronization I/O
degrading our system performance every time.

To approach the latter problem: why is synchronisation unnecessary? We could, physi-
cally spoken, skip an overwhelming portion of the synchronization, because most of our
volume data did not change in the period between the previous and the current snapshot
(the actual amount, of course, depends on the I/O behavior of the application). Currently,
after having taken the previous snapshot, we do not have an appropriate object to log
data changes. If the volume kept track of such changes, VxVM would know which regions
to resynchronize and which to keep unmodified when “refreshing” the snapshot with the
current data set.

This strongly desired log structure is represented by the Data Change Object (DCO) with
its associated Data Change Log volume (DCL). The DCO links the application volume with

250

Point In Time Copies (Snapshots)

its DCL volume providing some attributes concerning the features of the DCL. The most
important attribute is called regionsize or regionsz, depending on the command line
context. It defines the size of a contiguous region within the address space of the volume
represented by one bit within the DCL volume.

The coded set of attributes shown by vxprint in its standard usage does not show the
regionsize attribute. Therefore, we need special options to get its current value defin-
ing the bitmap structure of a snapshot “prepared” or a volume already “snapshot”. Two
examples, the first to use a comprehensible procedure, the second, deadly complicated, for
scripting purposes (note, that vxprint -e needs the volume record ID rid to determine the
associated DCO parent volume, not its name):

vxprint -rLtg adg
[…]
v avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol-01 adg01 0 2097152 0 c1t1d0 ENA
pl avol-02 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 avol-02 adg02 0 2097152 0 c1t1d1 ENA
dc avol_dco avol avol_dcl

v avol_dcl - ENABLED ACTIVE 544 SELECT - gen
pl avol_dcl-01 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg03-01 avol_dcl-01 adg03 0 544 0 c1t1d2 ENA
pl avol_dcl-02 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg01-02 avol_dcl-02 adg01 2097152 544 0 c1t1d0 ENA
vxprint -g adg -F %regionsz avol_dco
128
vxprint -g adg -cF %regionsz -e dco_parent_vol=$(vxprint -g adg -F %rid avol)
128

The number 128 stands, as usual, for 128 sectors, that is 64 kB. So, one bit within the
DCL bitmap represents 64 kB within its data volume (as we have seen in the commands
above, this volume is also called DCO parent volume, while the DCL volume is never called
DCO child volume). If any amount of data within such a region is modified, its correspond-
ing bit is set, marking that region's need for resynchronization. Given our example parent
volume with its size of 1 GB (which comprises 16,384 = 214 regions of 64 kB), we need
16,384 bits or 2,048 bytes or 2 kB space to form the region bitmap. But surprisingly, the
bitmap volume is much larger in size (544 sectors = 272 kB). Well, one reason is, that the
DCL volume contains a multi-function bitmap of 33 levels providing not only improved
snapshot characteristics (see the "Technical Deep Dive" part). Furthermore, we need some
“global”, region independent attribute data. There may be still further explanations, but
they are unknown to us, they are not officially documented.

If, for any reason, the region size must be different from the default, you can specify
it. We mention the procedure to achieve it not only in order to introduce a new keyword
of vxsnap, but also to show an interesting error message concerning the multi-function
bitmap (explained later). The “restore” example below demonstrates that, under special
conditions, the resynchronization I/O size depends on the region size. And, what is more,

251

Features of and Improvements on the Raw Device Snapshot

we urgently need it when creating full sized instant snapshots (see below).

vxsnap -g adg unprepare avol
VxVM vxassist ERROR V-5-1-6169 Volume avol has drl attach to it, use -f option
to remove drl
vxsnap -g adg -f unprepare avol
vxprint -rtg adg
[…]
v avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol-01 adg01 0 2097152 0 c1t1d0 ENA
pl avol-02 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 avol-02 adg02 0 2097152 0 c1t1d1 ENA
vxsnap -g adg prepare avol regionsize=32
vxprint -rLtg adg
[…]
v avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol-01 adg01 0 2097152 0 c1t1d0 ENA
pl avol-02 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 avol-02 adg02 0 2097152 0 c1t1d1 ENA
dc avol_dco avol avol_dcl

v avol_dcl - ENABLED ACTIVE 1120 SELECT - gen
pl avol_dcl-01 avol_dcl ENABLED ACTIVE 1120 CONCAT - RW
sd adg03-01 avol_dcl-01 adg03 0 1120 0 c1t1d2 ENA
pl avol_dcl-02 avol_dcl ENABLED ACTIVE 1120 CONCAT - RW
sd adg01-02 avol_dcl-02 adg01 2097152 1120 0 c1t1d0 ENA
vxprint -g adg -cF %regionsz -e dco_parent_vol=$(vxprint -g adg -F %rid avol)
32

Note the increased size of the DCL volume, because every 16 kB region is now mapped!
Unlike our example, you should consider to increase the region size to get larger “restore”
I/O sizes. Note also, that the flexible architecture of the bitmap is too “difficult” for the
legacy vxdco command, use vxsnap instead.

To avoid too many confusing details now, we come back to our main question (DRL
attributes and log version will follow): How can I make use of this logging feature, which
should help to dramatically reduce the amount of data synchronization in case of a snap-
shot refresh? I only need to use another new keyword of vxsnap. The following example
assumes a snapshot “prepared” volume (vxsnap prepare and vxsnap addmir already issued)
and is surrounded by vxtrace and vxstat commands to demonstrate the effect:

vxsnap -g adg make source=avol/newvol=SNAP-avol/plex=avol-03
vxtrace -g adg -d /tmp/vxtrace.dump -o dev &
[1] 19003
dd if=/dev/zero of=/dev/vx/rdsk/adg/avol bs=1024k count=4

252

Point In Time Copies (Snapshots)

4+0 records in
4+0 records out
kill %1
[1] + Terminated vxtrace -g adg -d /tmp/vxtrace.dump -o dev &
vxtrace -g adg -f /tmp/vxtrace.dump -o dev
11 START write vdev avol block 0 len 2048 concurrency 1 pid 19037
11 END write vdev avol op 11 block 0 len 2048 time 2
12 START write vdev avol block 2048 len 2048 concurrency 1 pid 19037
12 END write vdev avol op 12 block 2048 len 2048 time 1
13 START write vdev avol block 4096 len 2048 concurrency 1 pid 19037
13 END write vdev avol op 13 block 4096 len 2048 time 1
14 START write vdev avol block 6144 len 2048 concurrency 1 pid 19037
14 END write vdev avol op 14 block 6144 len 2048 time 1
vxtrace -g adg -d /tmp/vxtrace.dump -o all &
[1] 19049
vxstat -g adg -r
vxsnap -g adg reattach SNAP-avol source=avol
kill %1
[1] + Terminated vxtrace -g adg -d /tmp/vxtrace.dump -o all &
vxtrace -g adg -f /tmp/vxtrace.dump -o all | grep atomic
78 START atomic_copy vol avol op 79 block 0 len 2048 nsrc 32 ndest 1
78 END atomic_copy vol avol op 79 block 0 len 2048 time 2
86 START atomic_copy vol avol op 87 block 2048 len 2048 nsrc 32 ndest 1
86 END atomic_copy vol avol op 87 block 2048 len 2048 time 1
94 START atomic_copy vol avol op 95 block 4096 len 2048 nsrc 32 ndest 1
94 END atomic_copy vol avol op 95 block 4096 len 2048 time 1
102 START atomic_copy vol avol op 103 block 6144 len 2048 nsrc 32 ndest 1
102 END atomic_copy vol avol op 103 block 6144 len 2048 time 2
vxstat -g adg -f ab
 ATOMIC COPIES READ-WRITEBACK
TYP NAME OPS BLOCKS AVG(ms) OPS BLOCKS AVG(ms)
vol avol 4 8192 12.0 0 0 0.0
vol avol_dcl 0 0 0.0 0 0 0.0

Indeed, it works! Instead of a full resynchronization, only those volume blocks are
resynchronized which were previously overwritten by the dd command. It is, by the way,
completely accidental that the I/O size of the dd command is identical to that of the resyn-
chronization thread: 2,048 sectors = 1,024 kB = 1 MB. This is the Atomic Copy default,
a snap “reattach” is indeed a plex attach, vxtask list would show the I/O type ATCOPY
within the operation PLXSNAP. We simply have chosen 1 MB for dd to get corresponding
numbers in both vxtrace outputs.

So we have solved one major disadvantage of a physical snapshot: Only data modi-
fied since the snapshot was taken are rewritten to the reattached snapshot plex. Not only
is the amount of synchronization I/O dramatically reduced together with a lower system
load. Furthermore, the plex marked for snapshot purposes becomes available for the next
snapshot quite a lot faster. A few pages later, we will learn another procedure to really
immediately bring the snapshot to the current data state (at least it looks and behaves so).

253

Features of and Improvements on the Raw Device Snapshot

But now, we will first turn to another feature of the raw device snapshot.

Reverting the Resynchronization Direction9.3.2	

It should not happen, but it could happen that, while the snapshot still exists, the original
device becomes unusable, either by hardware failures or by corrupted (application) data:
lost files or database tables, invalid values, patches of the sort “hot destroy” instead of
“hot fix”. Note that volume redundancy does not protect against the latter scenario! Our
best copy of volume data is most likely provided by the snapshot. Of course, in case of a
disk outage, we need to recover disks and disk group first. Under normal conditions, the
synchronization is directed by VxVM from the ENABLED/ACTIVE plexes (not by the volume
layer) to the snapshot plex, which will become a member of the original volume once again.
In this special case, we need a reversed synchonization direction: the original plexes with
I/O fail or damaged data enter the STALE state (that’s why the application access must be
stopped first), the “snapbacked” plex forms the single current volume address space (at this
stage, the application could already be restarted!), and finally, the synchronization thread
is started from the volume based on the latter plex to the stale ones.

vxsnap -g adg make source=avol/new=SNAP-avol/plex=avol-03
dd if=/dev/zero of=/dev/vx/rdsk/adg/avol bs=1024k count=4
4+0 records in
4+0 records out
vxstat -g adg -r
vxsnap -g adg restore avol source=SNAP-avol destroy=yes
vxstat -g adg -vp
 OPERATIONS BLOCKS AVG TIME(ms)
TYP NAME READ WRITE READ WRITE READ WRITE
vol avol 0 0 0 0 0.0 0.0
pl avol-01 0 64 0 8192 0.0 8.0
pl avol-02 0 64 0 8192 0.0 7.7
pl avol-03 65 0 8208 0 2.2 0.0
vol avol_dcl 0 0 0 0 0.0 0.0
pl avol_dcl-01 18 29 258 434 0.0 1.0
pl avol_dcl-02 0 29 0 434 0.0 1.0
pl avol_dcl-03 6 5 96 80 1.7 8.0

The testing scenario resembles the former one (we skipped vxtrace, its output would
be too long). Five remarks:

1.	 The source keyword in the latter vxsnap command does not indicate the original
volume, but the snapshot volume, thus specifying the synchronization/“restore”
direction.

2.	 Physical synchronization may be omitted by adding syncing=no, the application vol-
ume would be restored “logically” (see logical snapshots below for further details).

3.	 Without destroy=yes (or with destroy=no), the snapshot volume would remain
a separate volume (this is the reverted equivalent to vxsnap refresh explained

254

Point In Time Copies (Snapshots)

below).

4.	 The I/O sizes are smaller compared to a reattach resynchronization: 8,192 sectors
= 4,096 kB in 64 I/Os correspond an I/O size of 64 kB, which is our default DCO
region size. vxtask list would show the I/O type SNAPSYNC within the operation
SNAPSYNC. We have smaller granularity for resynchronization, but the main I/O
strategy remains identical.

5.	 Don’t ask us, why the source plex was read one I/O in addition, we do not know the
answer.

The Snap Objects9.3.3	

Another new object type related to snapshots needs further investigation, the snap object
(“sp”) linking the snapshot volume to its original volume and vice-versa. Why do we need
them? The first observation: In case of the keywords reattach, restore, and refresh, the
command vxsnap would fail without the source volume keyword and a specified (target)
volume. The second observation, seemingly contradictory: We will demonstrate a procedure
to instantly create a snapshot relation between previously independent volumes a few
pages later. To conclude, the snap objects mark the volumes as members of a snapshot
interconnection (called “chain”), thus prohibiting their inadvertently snap unprepare or
volume destruction:

vxsnap -g adg unprepare SNAP-avol
VxVM vxsnap ERROR V-5-1-6170 Volume SNAP-avol is in snapshot chain
vxassist -g adg remove volume SNAP-avol
VxVM vxassist ERROR V-5-1-10127 deleting volume SNAP-avol:
 Record is associated

Warning: The snap objects do not protect against the vxedit -rf rm command, in
spite of the manual page to vxsnap dis! The snapshot volume would be destroyed together
with all snap objects, leaving the original volume in the snap “prepared” state (and vice-
versa).

But the most important function of the snap objects is to indicate, that the intelligent
DC log is ready for use in case of snapshot reattach, restore, and refresh. Without snap
objects, it is possible to create or recreate a snapshot relation between the two data vol-
umes (full sized instant snapshot), but any synchronization task would mean 100 percent
synchronization.

How does the snap object identify its source and its target volume? The vxprint -t
command does not show any appropriate attributes, only the location of the sp object
under the DCL volume, and the naming convention indicates source and target (which is
not a must, as we know). Other options (-l, -A, -a, -m) print two snap object attributes:
GUIDs unmistakably identifying the source (attribute name “vol_guid”) and the target
volume (“snapshot_vol_guid”). The -F option allows to specify a desired output format, as
given in the following example:

255

Features of and Improvements on the Raw Device Snapshot

vxprint -g adg -cF 'snapobject %name: source=%vol_guid '\
 'target=%snapshot_vol_guid'
object SNAP-avol_dco: source=- target=-
object avol_dco: source=- target=-
object SNAP-avol_snp: source={71840bae-1dd2-11b2-88f6-0003ba07fc88}
target={78b99146-1dd2-11b2-88ed-0003ba07fc88}
object avol_snp: source={78b99146-1dd2-11b2-88ed-0003ba07fc88} target={71840bae-
1dd2-11b2-88f6-0003ba07fc88}

Note: The first two lines of the output belong to the data change objects linking the
data volumes to their DCL volume. The option -c cannot differentiate between snap objects
and DC objects. Note also, that the literal expression "snapobject" at the beginning of the
argument to the -F option was shortened to "object" as a result of an internal program-
ming error of vxprint.

Well, the identification by GUIDs indeed is unique, but it is quite unreadable for us. The
Shell with its powerful capabilities (here: loops, conditionals, command substitution) allows
us to generate a quite unreadable expression, but the output is of the sort we like to see:

printf '%-15s %-15s %s\n' SNAP_OBJECT SOURCE TARGET; \
 vxprint -g adg -cF '%type %name %vol_guid %snapshot_vol_guid' |
 while read Type Name VGuid SVGuid; do
 [[$Type == sp]] || continue
 printf '%-15s %-15s %s\n' $Name \
 $(vxprint -g adg -vne v_guid=$VGuid) \
 $(vxprint -g adg -vne v_guid=$SVGuid)
 done
SNAP_OBJECT SOURCE TARGET
SNAP-avol_snp avol SNAP-avol
avol_snp SNAP-avol avol

Fortunately, vxsnap itself provides a powerful keyword to print snapshot information.
We show two examples:

vxsnap -g adg print
NAME SNAPOBJECT TYPE PARENT SNAPSHOT %DIRTY %VALID

avol -- volume -- -- -- 100.00
 SNAP-avol_snp volume -- SNAP-avol 0.00 --

SNAP-avol avol_snp volume avol -- 0.00 100.00

The relation of the snap objects to the source and target volumes is printed together
with "dirty" and "valid" percentage (explained later).

vxsnap -g adg -n print
NAME DG OBJTYPE SNAPTYPE PARENT PARENTDG SNAPDATE

256

Point In Time Copies (Snapshots)

avol adg vol - - - - -
SNAP-avol adg vol mirbrk avol adg 2008/09/14 08:54

This command does not show the names of the snap objects, but, besides the relation
of original and snapshot volume, the snapshot type ("mirror break", we will learn another
type later) and, quite important, the snapshot date, i.e. the date the snapshot plex was
dissociated from the original volume.

The keyword list of vxsnap produces nearly the same output and may be skipped for
further investigation.

Clearing the Snapshot Relation9.3.4	

Sometimes you could decide to never again bring back the snapshot volume to its original
location, e.g. you want to go on with your application in the test location for an undefined
period. It would simplify the administration to cut off the snapshot interconnection:

vxprint -rLtg adg
[…]
v SNAP-avol - ENABLED ACTIVE 2097152 ROUND - fsgen
pl avol-03 SNAP-avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-02 avol-03 adg03 544 2097152 0 c1t1d2 ENA
dc SNAP-avol_dco SNAP-avol SNAP-avol_dcl

v SNAP-avol_dcl - ENABLED ACTIVE 544 ROUND - gen
pl avol_dcl-03 SNAP-avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg02-02 avol_dcl-03 adg02 2097152 544 0 c1t1d1 ENA
sp avol_snp SNAP-avol SNAP-avol_dco

v avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol-01 adg01 0 2097152 0 c1t1d0 ENA
pl avol-02 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 avol-02 adg02 0 2097152 0 c1t1d1 ENA
dc avol_dco avol avol_dcl

v avol_dcl - ENABLED ACTIVE 544 SELECT - gen
pl avol_dcl-01 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg03-01 avol_dcl-01 adg03 0 544 0 c1t1d2 ENA
pl avol_dcl-02 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg01-02 avol_dcl-02 adg01 2097152 544 0 c1t1d0 ENA
sp SNAP-avol_snp avol avol_dco

vxsnap -g adg dis SNAP-avol
vxprint -rLtg adg
[…]

257

Features of and Improvements on the Raw Device Snapshot

v SNAP-avol - ENABLED ACTIVE 2097152 ROUND - fsgen
pl avol-03 SNAP-avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-02 avol-03 adg03 544 2097152 0 c1t1d2 ENA
dc SNAP-avol_dco SNAP-avol SNAP-avol_dcl

v SNAP-avol_dcl - ENABLED ACTIVE 544 ROUND - gen
pl avol_dcl-03 SNAP-avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg02-02 avol_dcl-03 adg02 2097152 544 0 c1t1d1 ENA

v avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol-01 adg01 0 2097152 0 c1t1d0 ENA
pl avol-02 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 avol-02 adg02 0 2097152 0 c1t1d1 ENA
dc avol_dco avol avol_dcl

v avol_dcl - ENABLED ACTIVE 544 SELECT - gen
pl avol_dcl-01 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg03-01 avol_dcl-01 adg03 0 544 0 c1t1d2 ENA
pl avol_dcl-02 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg01-02 avol_dcl-02 adg01 2097152 544 0 c1t1d0 ENA

The snap objects are removed. From now on, VxVM handles both volumes as completely
distinct volumes, even though they are still snap “prepared”. A somewhat softer version is
performed by vxsnap split: In case of a still running synchronization thread of a full sized
instant snapshot (see below), it would fail. This keyword is designed to temporarily remove
the snap objects only for a fully synchronized snapshot and to recreate them at any time
by way of building a logical snapshot (see below).

Deleting the Snapshot9.3.5	

Combined with our knowledge about volume destruction, we are now able to “cleanly”
remove a snapshot (don’t forget to stop application access and/or to unmount the cor-
responding file system as the first step):

vxsnap -g adg split SNAP-avol
vxassist -g adg remove volume SNAP-avol

The procedure for impatient and courageous guys never committing mistakes:

vxedit -g adg -rf rm SNAP-avol

258

Point In Time Copies (Snapshots)

Offhost Processing9.3.6	

A physical snapshot is a frozen, but nevertheless complete copy of the volume address
space. As already mentioned in the introduction to snapshots, we could want to transfer
the access to this copy to another host, e.g. for the following purposes: offhost backup,
exhaustive reporting with several data warehouse like full table scans, separated testing
environment, and so on.

But alas! VxVM regulates the access to its volumes on a per disk group base.
Unfortunately, the original volume and its snapshot volume are kept in the same disk group.
We must conclude, that either offhost processing is impossible or we need the expensive
Cluster Volume Manager license to enable parallel access to disk groups or the disk group
must be split. The latter is indeed implemented.

The Disk Group Split and Join feature (DGSJ) was introduced in VxVM 3.2 and got an
improved administration by the vxsnap command. Splitting a disk group into two com-
pletely independent disk groups requires some intelligent planning of storage allocation
of the volumes. So we usually need to specify the storage attributes when preparing the
volume for snapshots and creating the snapshot related objects.

A standard volume is not bound to build its address spaces (plexes) from specific stor-
age, the subdisk is a arbitrarily configurable instance between the physical and the virtual
layer, in other words, its virtual position within the plex is completely independent from its
physical position on the disk. Nevertheless, vxassist has a reasonable built-in limitation to
serve redundancy and performance needs: You cannot stripe or mirror over subdisks on the
same disk as long as the subdisks are part of the top level or the same sublevel volume.

When splitting a complex snapshot structure into two different disk groups, we do not
want to destroy structures we want to keep alive and to go on working properly (the origi-
nal volume should remain online). We do not want, as an example, to destroy its twofold
redundancy (two data plexes). Since it is impossible and indeed not suitable for integrity
needs to keep the original access of host A to mirror 1 and to switch the access to mirror 2
to host B, while the volume fully remains in use, VxVM does not allow to rupture a volume
by splitting the disk group. Therefore, all disks used by a volume must either remain in the
original disk group or completely split off into the new disk group.

The DCL volume of a snapshot “prepared” application volume is an integral part of its
DCO parent volume, associated by the DC object. The disk group split must not destroy this
logging volume as well, and it must not cut off its logging relation to the parent volume.
The same is true for the snapshot side of our volume structure: The snapshot volume and its
DCL volume if carrying redundancy (which is not the default) need to be kept connected.

To sum up: The set of disks used to build the application volume and its DCL volume on
the “left” side (see image below) and the set of the snapshot volume and its DCL volume on
the “right” side need to be strictly exclusive. Furthermore, all other volumes or comparable
associations (replicated volume groups, volume sets, DCO logs, cache subdisks), if there
are any within the same disk group, must conform to that rule. Otherwise, our attempt to
split the disk group will fail! The next example (this time with the subdisks drawn) shows a
properly configured scenario: All subdisks of the original volume and its DCL volume reside
on disks adg01 and adg02, while the snapshot part only uses disk adg03.

259

Features of and Improvements on the Raw Device Snapshot

adg01 adg02 adg03

adg01 adg02 adg03

Application and snapshot volume ready for disk group splitFigure 9-6:

But what can be done to achieve this layout? Make use of the storage attributes when
creating volume and snapshot objects:

vxassist -g adg make avol 1g layout=mirror nmirror=2 init=active \
 alloc=adg01,adg02
vxsnap -g adg prepare avol alloc=adg01,adg02
vxsnap -g adg addmir avol alloc=adg03
vxprint -rLtg adg
[…]
v avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol-01 adg01 0 2097152 0 c1t1d0 ENA
pl avol-02 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 avol-02 adg02 0 2097152 0 c1t1d1 ENA
pl avol-03 avol ENABLED SNAPDONE 2097152 CONCAT - WO
sd adg03-01 avol-03 adg03 0 2097152 0 c1t1d2 ENA
dc avol_dco avol avol_dcl

v avol_dcl - ENABLED ACTIVE 544 SELECT - gen
pl avol_dcl-01 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg01-02 avol_dcl-01 adg01 2097152 544 0 c1t1d0 ENA
pl avol_dcl-02 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg02-02 avol_dcl-02 adg02 2097152 544 0 c1t1d1 ENA

260

Point In Time Copies (Snapshots)

pl avol_dcl-03 avol_dcl DISABLED DCOSNP 544 CONCAT - RW
sd adg03-02 avol_dcl-03 adg03 2097152 544 0 c1t1d2 ENA

And what to do, if the volumes already exist and cannot be removed and recreated,
because they are in use? Well, we could move the subdisks to the desired locations using
vxsd mv or vxassist move, sensibly on the DCL volume due to its small size. Sometimes,
there is no other way to free a disk from concurrent use by different volumes. In our single
application volume scenario, we would like to introduce another way, mostly easier to
handle and sometimes useful for other purposes: We simply switch the snap markers to the
appropriate plexes. Switching is done by removing the marker from one plex and setting
it to another one. Since it does not work exactly this way, we first provide three operation
mode examples:

1.	 Switching the snap marker only for the data plex (the first command will remove the
DCOSNP plex in the DCL volume, the latter will NOT recreate it):

vxplex -g adg convert state=ACTIVE <snapdone-plex>
vxplex -g adg convert state=SNAPDONE <active-plex>

2.	 Switching the snap marker to ACTIVE only for the DCL plex (you cannot revert it to
DCOSNP):

vxplex -g adg convert state=ACTIVE <dcosnp-plex>

3.	 Switching the snap markers for both, the data and the DCL plex (the first command
will remove the DCOSNP plex in the DCL volume):

vxplex -g adg -o dcoplex=<dcosnp-plex> convert state=ACTIVE <snapdone-plex>
vxplex -g adg -o dcoplex=<active-plex> convert state=SNAPDONE <active-plex>

Due to the removal of DCOSNP plexes when converting the appropriate data plex to
the active state, we conclude that we must recreate the lost DCL plex before switching
both plexes to serve as snapshot plexes:

vxplex -g adg convert state=ACTIVE <snapdone-plex>
vxassist -g adg mirror <dcl-volume> [alloc=<disk>]
vxplex -g adg -o dcoplex=<active-plex> convert state=SNAPDONE <active-plex>

Having successfully prepared our subdisk usage, we perform the disk group split. There
is no risk in executing the following command, because it will fail instead of destroying
related object associations or making volumes in use inaccessible by moving them into a
different disk group:

vxsnap -g adg make source=avol/new=SNAP-avol/plex=avol-03
vxdg split adg offdg SNAP-avol
vxdisk list

261

Features of and Improvements on the Raw Device Snapshot

[…]
c1t1d0s2 auto:cdsdisk adg01 adg online
c1t1d1s2 auto:cdsdisk adg02 adg online
c1t1d2s2 auto:cdsdisk adg03 offdg online
vxprint -rLtg adg
[…]
v avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol-01 adg01 0 2097152 0 c1t1d0 ENA
pl avol-02 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 avol-02 adg02 0 2097152 0 c1t1d1 ENA
dc avol_dco avol avol_dcl

v avol_dcl - ENABLED ACTIVE 544 SELECT - gen
pl avol_dcl-01 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg01-02 avol_dcl-01 adg01 2097152 544 0 c1t1d0 ENA
pl avol_dcl-02 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg02-02 avol_dcl-02 adg02 2097152 544 0 c1t1d1 ENA
sp SNAP-avol_snp avol avol_dco
vxprint -rLtg offdg
[…]
v SNAP-avol - DISABLED ACTIVE 2097152 ROUND - fsgen
pl avol-03 SNAP-avol DISABLED ACTIVE 2097152 CONCAT - RW
sd adg03-01 avol-03 adg03 0 2097152 0 c1t1d2 ENA
dc SNAP-avol_dco SNAP-avol SNAP-avol_dcl

v SNAP-avol_dcl - DISABLED ACTIVE 544 ROUND - gen
pl avol_dcl-03 SNAP-avol_dcl DISABLED ACTIVE 544 CONCAT - RW
sd adg03-02 avol_dcl-03 adg03 2097152 544 0 c1t1d2 ENA
sp avol_snp SNAP-avol SNAP-avol_dco

Now, the new disk group containing the snapshot volume and its DCL volume is ready
for offhost processing. We are able to deport it and import it on another host, start the
volumes, and attend our offhost duties. In many cases, it is quite reasonable to revert this
procedure to be prepared for the next snapshot. First, we must stop our offhost processing,
then deport the disk group and import it once again on the original host. Below are the
steps required to join the already imported offhost disk group with the application disk
group, start the snapshot volume and its DCL volume affected by the volume move (option
-m), and reattach them to their original volumes (a refresh or a restore operation would
only modify the keyword of the last command):

vxdg join offdg adg
vxrecover -g adg -m
vxsnap -g adg reattach SNAP-avol source=avol

262

Point In Time Copies (Snapshots)

Full Sized Volume Based Instant Snapshots9.3.7	

Let's turn to another functionality of the multi-layered DCL bitmap! We already mentioned,
that the amount of time needed to synchronize a new snapshot plex or to bring an existing
snapshot volume to the current state of application data is somewhat harmful. Sometimes,
we immediately need the snapshot.

One layer within the DCL bitmap of the snapshot volume provides pointer functional-
ity: If the bit is set, its correspondent region data are physically stored in the snapshot
volume itself, whether these data are the original snapshot data or data modified by write
access to the snapshot volume. If the bit is cleared, its correspondent region data are read
from the original device, because data did not change since the snapshot. This kind of
procedure to simulate a physical snapshot is called "logical snapshot".

263

Features of and Improvements on the Raw Device Snapshot

Snapshot Read I/O

Read access to a full sized "logical" snapshotFigure 9-7:

Such a snapshot is indeed immediately ready for use. We only need to specify an
appropriate volume as a snapshot for the application volume, VxVM will clear all bits within
the "logical snapshot" bitmap, thus providing a simulated copy of the application volume
accessed by another volume driver. We will now explain the mode of operation together
with the necessary configuration step by step. Let's start at the very beginning with the
creation of the application volume and the volume to become its logical snapshot. Note
that the size of both top-level volumes and the region size of both bitmaps are identical.

vxassist -g adg make avol 1g layout=mirror init=active alloc=adg01,adg02
vxsnap -g adg prepare avol alloc=adg01,adg02
vxprint -rLtg adg
[…]
v avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol-01 adg01 0 2097152 0 c1t1d0 ENA
pl avol-02 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 avol-02 adg02 0 2097152 0 c1t1d1 ENA
dc avol_dco avol avol_dcl

v avol_dcl - ENABLED ACTIVE 544 SELECT - gen
pl avol_dcl-01 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg01-02 avol_dcl-01 adg01 2097152 544 0 c1t1d0 ENA

264

Point In Time Copies (Snapshots)

pl avol_dcl-02 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg02-02 avol_dcl-02 adg02 2097152 544 0 c1t1d1 ENA
vxassist -g adg make SNAP-avol 1g alloc=adg03
vxprint -g adg -F %regionsz avol_dco
128
vxsnap -g adg prepare SNAP-avol regionsize=128 alloc=adg03
vxprint -rLtg adg
[…]
v SNAP-avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl SNAP-avol-01 SNAP-avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-01 SNAP-avol-01 adg03 0 2097152 0 c1t1d2 ENA
dc SNAP-avol_dco SNAP-avol SNAP-avol_dcl

v SNAP-avol_dcl - ENABLED ACTIVE 544 SELECT - gen
pl SNAP-avol_dcl-01 SNAP-avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg03-02 SNAP-avol_dcl-01 adg03 2097152 544 0 c1t1d2 ENA

v avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol-01 adg01 0 2097152 0 c1t1d0 ENA
pl avol-02 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 avol-02 adg02 0 2097152 0 c1t1d1 ENA
dc avol_dco avol avol_dcl

v avol_dcl - ENABLED ACTIVE 544 SELECT - gen
pl avol_dcl-01 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg01-02 avol_dcl-01 adg01 2097152 544 0 c1t1d0 ENA
pl avol_dcl-02 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg02-02 avol_dcl-02 adg02 2097152 544 0 c1t1d1 ENA

The current content of the disk group exactly looks like an application volume with its
split or dissociated snapshot volume (the snap objects are missing). But remember: Until
now, our volumes never had a snapshot relation. And keep in mind: Creating the volume
designed to serve as snapshot took only a few seconds (unless you are not familiar with
the procedure).

The next step is to tell VxVM that the latter volume should serve as a logical snapshot
to the application volume. Quite easy with the vxsnap command:

vxsnap -g adg make source=avol/snap=SNAP-avol sync=no
vxprint -rLtg adg
…
v SNAP-avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl SNAP-avol-01 SNAP-avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-01 SNAP-avol-01 adg03 0 2097152 0 c1t1d2 ENA
dc SNAP-avol_dco SNAP-avol SNAP-avol_dcl

265

Features of and Improvements on the Raw Device Snapshot

v SNAP-avol_dcl - ENABLED ACTIVE 544 SELECT - gen
pl SNAP-avol_dcl-01 SNAP-avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg03-02 SNAP-avol_dcl-01 adg03 2097152 544 0 c1t1d2 ENA
sp avol_snp SNAP-avol SNAP-avol_dco

v avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol-01 adg01 0 2097152 0 c1t1d0 ENA
pl avol-02 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 avol-02 adg02 0 2097152 0 c1t1d1 ENA
dc avol_dco avol avol_dcl

v avol_dcl - ENABLED ACTIVE 544 SELECT - gen
pl avol_dcl-01 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg01-02 avol_dcl-01 adg01 2097152 544 0 c1t1d0 ENA
pl avol_dcl-02 avol_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg02-02 avol_dcl-02 adg02 2097152 544 0 c1t1d1 ENA
sp SNAP-avol_snp avol avol_dco

We already recognize the snap objects linking the snapshot volume to its application
volume and vice-versa. Currently, assuming no application write I/Os, the snapshot bitmap
of SNAP-avol_dcl marks all snapshot regions as "invalid", i.e. all data must be read from
the application volume.

The command vxsnap provides a useful keyword to print the amount of "valid", i.e. to
the snapshot volume already synchronized regions:

vxsnap -g adg print
NAME SNAPOBJECT TYPE PARENT SNAPSHOT %DIRTY %VALID

avol -- volume -- -- -- 100.00
 SNAP-avol_snp volume -- SNAP-avol 0.00 --

SNAP-avol avol_snp volume avol -- 0.00 0.00

The last word (column %VALID) in the last line (object name SNAP-avol) shows, that
no data were already stored on the snapshot volume (0.00%). But what becomes of data
overwritten by write access of the application? The snapshot mechanism must store the
original data set to the snapshot volume before it is physically overwritten by the applica-
tion for the first time ("copy on first write"). Furthermore, the corresponding bit in the DCL
bitmap needs to be set to indicate that the snapshot is prohibited to read those region data
from the application volume.

Indeed, vxsnap prints out, that some portions of the snapshot volume (depending on
the application I/O size) are now "valid", i.e. physically stored within the snapshot volume.
We overwrite the first 100 MB of our volume:

266

Point In Time Copies (Snapshots)

dd if=/dev/zero of=/dev/vx/rdsk/adg/avol bs=1024k count=100
100+0 records in
100+0 records out
vxsnap -g adg print
NAME SNAPOBJECT TYPE PARENT SNAPSHOT %DIRTY %VALID

avol -- volume -- -- -- 100.00
 SNAP-avol_snp volume -- SNAP-avol 9.77 --

SNAP-avol avol_snp volume avol -- 9.77 9.77

Don't forget: 100 MB is less than 10% of 1 GB, because 1 GB consists of 1,024 MB!
9.77% of the original volume is already copied to the snapshot volume, and both volumes
differ in 9.77% of data (column %DIRTY).

We could want to convert the logical snapshot into a physical one, e.g. to enable
offhost processing or to save copy-on-first-write I/Os at a later, busy period by writing
application volume data to the snapshot volume right now. We could, of course, show real
patience until all regions of the application volume are overwritten by new data. But there
are two ways to start immediate snapshot synchronization.

1.	 At any time, we can start data transfer to the snapshot volume, enabling, if desired,
the "background" operation mode (option -b) and a performance throttle (specified
in milliseconds). We may also pause and resume it with the throttle started by, or
completely terminate it.

vxsnap -g adg -b [-o slow=<#>] syncstart SNAP-avol
vxtask list
TASKID PTID TYPE/STATE PCT PROGRESS
 172 SNAPSYNC/R 10.06% 0/2097152/210944 SNAPSYNC SNAP-avol adg
vxsnap -g adg syncpause SNAP-avol
vxtask list
TASKID PTID TYPE/STATE PCT PROGRESS
 172 SNAPSYNC/P 11.23% 0/2097152/235520 SNAPSYNC SNAP-avol adg
vxsnap -g adg print
NAME SNAPOBJECT TYPE PARENT SNAPSHOT %DIRTY %VALID

avol -- volume -- -- -- 100.00
 SNAP-avol_snp volume -- SNAP-avol 9.77 --

SNAP-avol avol_snp volume avol -- 9.77 11.33
vxsnap -g adg syncresume SNAP-avol
vxtask list
TASKID PTID TYPE/STATE PCT PROGRESS
 172 SNAPSYNC/R 11.52% 0/2097152/241664 SNAPSYNC SNAP-avol adg
vxsnap -g adg syncstop SNAP-avol
vxsnap -g adg print

267

Features of and Improvements on the Raw Device Snapshot

NAME SNAPOBJECT TYPE PARENT SNAPSHOT %DIRTY %VALID

avol -- volume -- -- -- 100.00
 SNAP-avol_snp volume -- SNAP-avol 9.77 --

SNAP-avol avol_snp volume avol -- 9.77 13.38
vxsnap -g adg syncresume SNAP-avol
VxVM vxsnap ERROR V-5-1-6680 No instant operation is running on the volume SNAP-
avol

2.	 When creating the snapshot relation between the two volumes, we may simply omit
the keyword sync or write sync=yes. This will immediately start a synchronization
thread on all volume regions:

vxsnap -g adg make source=avol/snap=SNAP-avol [sync=yes]

A fully synchronized snapshot volume does not only look and behave like a physical
snapshot, it is actually a physical snapshot, and there is no difference in the result com-
pared to the legacy snapshot mechanism: all snapshot I/Os are taken from the snapshot
device, offhost processing is possible, and so on.

Another remark concerning full sized instant snapshots: The volume intended to
become the instant snapshot of an application volume may not reside within the same disk
group. When establishing the snapshot relation, we may specify within the slash separated
tuple of the vxsnap command the keyword snapdg:

vxsnap -g adg make source=avol/snap=SNAP-avol/snapdg=offdg

Snapshot Refresh9.3.8	

Now, with the knowledge of logical snapshot relations based on the multi-functional
bitmap of the DCL volume, we will easily understand another feature of the DCO based
raw device snapshots, whether in complete or partial physical state: the snapshot refresh.
"Refreshing" the snapshot, that is updating the data set represented by the snapshot to
the current content of the application volume, simply means converting the snapshot DCO
bitmap from its current state (most probably a mixture of physical and logical pointer bits
or already indicating a fully synchronized snapshot) to a plain logical bitmap.

At any time, independent from the procedure which created the snapshot volume, but
nevertheless only without current access to it, a snapshot volume can be refreshed. The
refresh operation may invoke background synchronization at the same time (default behav-
ior), but this is, compared to the logical snapshot creation, just as well optional.

vxsnap -g adg refresh SNAP-avol [sync=no]

268

Point In Time Copies (Snapshots)

Space Optimized Volume Based Instant Snapshots9.3.9	

Consider you do not want or need a physical snapshot at all, and your snapshot will be
used only for a few hours (e.g. for backup purposes). Another physical instance of the vol-
ume address space, as required by the volume snapshot mechanisms hitherto explained,
could evoke inconvenient questions about wasting storage. And those questions should be
taken seriously, because they point to an undeniable weakness of physical snapshots: Data
remaining unchanged during the period of the snapshot are stored twice (application and
snapshot volume, if physical snapshot) or waste space on the snapshot volume (logical
snapshot). For logical snapshots, it would be sufficient to provide storage only for the origi-
nal data, before they are overwritten by the application. Data unchanged remain stored on
the application volume, while the snapshot bitmap simply continue to point to them.

Maybe you remember the construct of the VxFS based logical snapshot presented
in the "Easy Sailing" section. Indeed, we created a snapshot device containing a bitmap
of exactly that functioning and providing the storage required to save the original data,
before they were overwritten. We mentioned, that for many temporary purposes 10% of
the application size would be sufficient to serve as a snapshot device.

The VxVM based space optimized snapshot uses a somewhat different architecture in
order to support a shared cache, i.e. a cache providing dynamic storage for more than one
application volume. Thus, several application volumes can store their original data in one
storage device to benefit from dynamic storage requirements: an application requests for
snapshot purposes more storage, another application less than expected.

But what is our snapshot device now? We talked about application and cache volumes,
not about snapshot volumes. Well, the snapshot is indeed not a physical device anymore
except for the small storage needed to build the already known DCO bitmap, marking
whether the snapshot data are physically to be read from the application volume or from
the cache volume. The snapshot volume is still a regular volume as well as its plex, but the
subdisk is a virtual one (called "subcache"), not defined on a disk device or a subvolume
(other subdisks are still not drawn in the following picture).

269

Features of and Improvements on the Raw Device Snapshot

Cache Object

Subcache
(sc)

Application Volume Snapshot Volume

Cache Volume

Cache Registration

Su
bd

isk
 V

irt
ua

liz
at

io
n

Space optimized snapshot with cache volume and subcacheFigure 9-8:

Further details of space optimized snapshots with a shared cache volume are best
demonstrated by the procedure to create them. We choose two application volumes in the
simplest plex layout, vol1 and vol2 respectively.

vxassist -g adg make vol1 1g layout=mirror nmirror=2 init=active \
 alloc=adg01,adg02
vxassist -g adg make vol2 1g layout=mirror nmirror=2 init=active \
 alloc=adg03,adg04
vxsnap -g adg prepare vol1 alloc=adg01,adg02
vxsnap -g adg prepare vol2 alloc=adg03,adg04

Our cache volume will be mirrored to provide the same redundancy for the snapshots
as for the application volumes. Its size of 256 MB allows an average of more than 10%
of modified original data for both application volumes. Finally, we need a new object type
called "cache object" serving as a cache volume registration instance for the snapshots and
as a so-called in-core bitmap on used regions in the cache volume. For recovery purposes,

270

Point In Time Copies (Snapshots)

the cache object can be started and stopped.

vxassist -g adg make cvol 256m layout=mirror nmirror=2 init=active \
 alloc=adg05,adg06
vxmake -g adg cache cobjcvol cachevolname=cvol
vxcache -g adg start cobjcvol
vxprint -rLtg adg
[…]
v vol1 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol1-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol1-02 vol1 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol1-02 adg02 0 2097152 0 c1t1d1 ENA
dc vol1_dco vol1 vol1_dcl

v vol1_dcl - ENABLED ACTIVE 544 SELECT - gen
pl vol1_dcl-01 vol1_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg01-02 vol1_dcl-01 adg01 2097152 544 0 c1t1d0 ENA
pl vol1_dcl-02 vol1_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg02-02 vol1_dcl-02 adg02 2097152 544 0 c1t1d1 ENA

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-01 vol2-01 adg03 0 2097152 0 c1t1d2 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg04-01 vol2-02 adg04 0 2097152 0 c1t1d3 ENA
dc vol2_dco vol2 vol2_dcl

v vol2_dcl - ENABLED ACTIVE 544 SELECT - gen
pl vol2_dcl-01 vol2_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg03-02 vol2_dcl-01 adg03 2097152 544 0 c1t1d2 ENA
pl vol2_dcl-02 vol2_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg04-02 vol2_dcl-02 adg04 2097152 544 0 c1t1d3 ENA

co cobjcvol cvol ENABLED ACTIVE

v cvol cobjcvol ENABLED ACTIVE 524288 SELECT - fsgen
pl cvol-01 cvol ENABLED ACTIVE 524288 CONCAT - RW
sd adg05-01 cvol-01 adg05 0 524288 0 c1t1d4 ENA
pl cvol-02 cvol ENABLED ACTIVE 524288 CONCAT - RW
sd adg06-01 cvol-02 adg06 0 524288 0 c1t1d5 ENA

Well, life is not always as easy as one could desire it! But it will get even more com-
plicated, because we still have no snapshots.

vxsnap -g adg make source=vol1/new=SNAP-vol1/cache=cobjcvol

271

Features of and Improvements on the Raw Device Snapshot

vxsnap -g adg make source=vol2/new=SNAP-vol2/cache=cobjcvol
vxprint -rLtg adg
[…]
v SNAP-vol1 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl SNAP-vol1-P01 SNAP-vol1 ENABLED ACTIVE 2097152 CONCAT - RW
sc SNAP-vol1-S01 SNAP-vol1-P01 cobjcvol 0 2097152 0 - ENA
dc SNAP-vol1_dco SNAP-vol1 SNAP-vol1_dcl

v SNAP-vol1_dcl - ENABLED ACTIVE 544 SELECT - gen
pl SNAP-vol1_dcl-01 SNAP-vol1_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg07-01 SNAP-vol1_dcl-01 adg07 0 544 0 c1t1d6 ENA
sp vol1_snp SNAP-vol1 SNAP-vol1_dco

v SNAP-vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl SNAP-vol2-P01 SNAP-vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sc SNAP-vol2-S01 SNAP-vol2-P01 cobjcvol 0 2097152 0 - ENA
dc SNAP-vol2_dco SNAP-vol2 SNAP-vol2_dcl

v SNAP-vol2_dcl - ENABLED ACTIVE 544 SELECT - gen
pl SNAP-vol2_dcl-01 SNAP-vol2_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg08-01 SNAP-vol2_dcl-01 adg08 0 544 0 c1t1d7 ENA
sp vol2_snp SNAP-vol2 SNAP-vol2_dco

v vol1 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol1-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol1-02 vol1 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol1-02 adg02 0 2097152 0 c1t1d1 ENA
dc vol1_dco vol1 vol1_dcl

v vol1_dcl - ENABLED ACTIVE 544 SELECT - gen
pl vol1_dcl-01 vol1_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg01-02 vol1_dcl-01 adg01 2097152 544 0 c1t1d0 ENA
pl vol1_dcl-02 vol1_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg02-02 vol1_dcl-02 adg02 2097152 544 0 c1t1d1 ENA
sp SNAP-vol1_snp vol1 vol1_dco

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-01 vol2-01 adg03 0 2097152 0 c1t1d2 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg04-01 vol2-02 adg04 0 2097152 0 c1t1d3 ENA
dc vol2_dco vol2 vol2_dcl

272

Point In Time Copies (Snapshots)

v vol2_dcl - ENABLED ACTIVE 544 SELECT - gen
pl vol2_dcl-01 vol2_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg03-02 vol2_dcl-01 adg03 2097152 544 0 c1t1d2 ENA
pl vol2_dcl-02 vol2_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg04-02 vol2_dcl-02 adg04 2097152 544 0 c1t1d3 ENA
sp SNAP-vol2_snp vol2 vol2_dco

co cobjcvol cvol ENABLED ACTIVE

v cvol cobjcvol ENABLED ACTIVE 524288 SELECT - fsgen
pl cvol-01 cvol ENABLED ACTIVE 524288 CONCAT - RW
sd adg05-01 cvol-01 adg05 0 524288 0 c1t1d4 ENA
pl cvol-02 cvol ENABLED ACTIVE 524288 CONCAT - RW
sd adg06-01 cvol-02 adg06 0 524288 0 c1t1d5 ENA

The result looks terrible, but don't give up! Some little drawing will do no harm:

273

Features of and Improvements on the Raw Device Snapshot

Cache Object

Subcache
(sc)

Subcache
(sc)(sc)

Application Volume
vol1

Snapshot Volume
SNAP-vol1

Shared Cache Volume
cvol

Cache Registration

Su
bd

isk
 V

irt
ua

liz
at

io
n

Application Volume
vol2

Snapshot Volume
SNAP-vol2

Subcache
(sc)

Subcache
(sc)

Cache Registration SubdiskVirtualization

Space optimized snapshots of two volumes with shared cacheFigure 9-9:

274

Point In Time Copies (Snapshots)

The picture together with some object names shows both application volumes (vol1,
vol2, each mirrored) with the associated DCL volumes (vol1_dcl, vol2_dcl, also mirrored),
the cache object cobjcvol with its mirrored cache volume cvol , both unmirrored snap-
shot volumes (SNAP-vol1, SNAP-vol2) with their associated DCL volumes (SNAP-vol1_dcl,
SNAP-vol2_dcl), and, finally, the snap objects pointing from the application volumes to
their snapshots and vice-versa. Remember: application volumes and snapshot volumes as
well need DCL bitmap volumes to log write I/Os to them. After all, it is not so incompre-
hensible, as it looked at the first sight.

Let's write some data to the application volumes to test the snapshot mechanism (128
MB to vol1, 64 MB to vol2):

dd if=/dev/zero of=/dev/vx/rdsk/adg/vol1 bs=1024k count=128
dd if=/dev/zero of=/dev/vx/rdsk/adg/vol2 bs=1024k count=64
vxsnap -g adg print
NAME SNAPOBJECT TYPE PARENT SNAPSHOT %DIRTY %VALID

vol1 -- volume -- -- -- 100.00
 SNAP-vol1_snp volume -- SNAP-vol1 12.50 --

vol2 -- volume -- -- -- 100.00
 SNAP-vol2_snp volume -- SNAP-vol2 6.25 --

SNAP-vol1 vol1_snp volume vol1 -- 12.50 12.50

SNAP-vol2 vol2_snp volume vol2 -- 6.25 6.25

Well, the output of the last command is disappointing to some extent. Indeed, com-
pared to the size of the application volumes, we created an amount of 12.50% and 6.25%
respectively of dirty regions. But we know, that 128 MB + 64 MB = 192 MB of data over-
written occupy already 75% of the cache volume (256 MB). Fortunately, VxVM provides a
command to show the actual usage of the cache volume:

vxcache stat cobjcvol
CACHE NAME TOTAL(Mb) USED(Mb) (%) AVAIL(Mb) (%) SDCNT
cobjcvol 256 196 (76) 60 (23) 2

Within the output, we recognize the name of the cache object, its total, used (4 MB
in addition due to cache management data), and available size (note the slight rounding
error in the percentage numbers), and the number of virtual snapshot subdisks simulated
by the cache volume.

Autogrow Related Attributes9.3.10	

A detailed analysis of the cache object attributes reveals some further interesting features
of the space optimized snapshot (excerpts):

275

Features of and Improvements on the Raw Device Snapshot

vxprint -g adg -m cobjcvol
cache cobjcvol
[…]
 autogrow=off
[…]
 hwmark=90
 autogrowby=104848
 max_autogrow=1048576
[…]

Currently, an attribute called autogrow seems to be turned off (you may specify
autogrow=on, when creating the cache object). Another attribute called hwmark could mean
a high water mark, obviously specified in percent unit. Reaching or exceeding the high
water mark of the cache object could trigger an automated growth of its cache volume,
probably by 104,848 sectors (about 51 MB, which is approximately 20% of the original
cache volume size) defined by the attribute autogrowby. In case of subsequent cache limit
events, the attribute max_autogrow seems to set a final limit to the cache volume size. Let's
activate and test our assumptions by overwriting further 40 MB:

vxcache -g adg set autogrow=on cobjcvol
vxcache -g adg set max_autogrow=400m cobjcvol
vxprint -g adg -F '%name %cachevol_len %autogrow %max_autogrow' cobjcvol
cobjcvol 524288 on 819200
dd if=/dev/zero of=/dev/vx/rdsk/adg/vol2 bs=1024k count=40 oseek=64

After a few seconds, the cache volume has grown:

vxcache -g adg stat cobjcvol
CACHE NAME TOTAL(Mb) USED(Mb) (%) AVAIL(Mb) (%) SDCNT
cobjcvol 307 236 (76) 71 (23) 2
vxprint -rtg adg cvol
[…]
v cvol cobjcvol ENABLED ACTIVE 629136 SELECT - fsgen
pl cvol-01 cvol ENABLED ACTIVE 629136 CONCAT - RW
sd adg05-01 cvol-01 adg05 0 629136 0 c1t1d4 ENA
pl cvol-02 cvol ENABLED ACTIVE 629136 CONCAT - RW
sd adg06-01 cvol-02 adg06 0 629136 0 c1t1d5 ENA

Since the cache volume is mirrored, we expect, that VxVM issued a read-writeback
synchronization thread for the additional volume size. We undertake to check for synchro-
nization I/Os when triggering once again an autogrow of the cache volume:

dd if=/dev/zero of=/dev/vx/rdsk/adg/vol2 bs=1024k count=64 oseek=104
while :; do vxtask list | tail +2; done
…
 42015 RDWRBACK/R 50.79% 629136/733984/682384 RESYNC cvol adg

276

Point In Time Copies (Snapshots)

…
^C
vxcache -g adg stat cobjcvol
CACHE NAME TOTAL(Mb) USED(Mb) (%) AVAIL(Mb) (%) SDCNT
cobjcvol 358 300 (83) 58 (16) 2
vxprint -rtg adg cvol
[…]
v cvol cobjcvol ENABLED ACTIVE 733984 SELECT - fsgen
pl cvol-01 cvol ENABLED ACTIVE 733984 CONCAT - RW
sd adg05-01 cvol-01 adg05 0 733984 0 c1t1d4 ENA
pl cvol-02 cvol ENABLED ACTIVE 733984 CONCAT - RW
sd adg06-01 cvol-02 adg06 0 733984 0 c1t1d5 ENA

It worked once again! Furthermore, we could verify the predicted read-writeback syn-
chronization. And finally, root@localhost already got two e-mails of the following sort:

[…]
Subject: Volume Manager cache grow notification on host haensel
[…]
Got a grow event notification for cache-volume cvol associated to cache-object
cobjcvol in disk-group adg

Another try! But remember: Our cache volume has a size of about 358 MB. The next
autogrow event will try to add another 51 MB to it, which will exceed the defined maxi-
mum size of the cache volume (400 MB).

dd if=/dev/zero of=/dev/vx/rdsk/adg/vol2 bs=1024k count=64 oseek=168
vxcache -g adg stat cobjcvol
CACHE NAME TOTAL(Mb) USED(Mb) (%) AVAIL(Mb) (%) SDCNT
cobjcvol 358 236 (65) 122 (34) 1

Oops! No resize operation did happen! The amount of used cache volume space was
even reduced! And, what is more, the number of virtual subdisks simulated by the cache
object was decremented. This looks suspiciously like a damaged snapshot to vol2:

vxprint -rLtg SNAP-vol2
[…]
v SNAP-vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl SNAP-vol2-P01 SNAP-vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sc SNAP-vol2-S01 SNAP-vol2-P01 cobjcvol 0 2097152 0 - ENA
dc SNAP-vol2_dco SNAP-vol2 SNAP-vol2_dcl

v SNAP-vol2_dcl - ENABLED ACTIVE 544 SELECT - gen
pl SNAP-vol2_dcl-01 SNAP-vol2_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg08-01 SNAP-vol2_dcl-01 adg08 0 544 0 c1t1d7 ENA
sp vol2_snp SNAP-vol2 SNAP-vol2_dco

277

Features of and Improvements on the Raw Device Snapshot

No, this snapshot seems to work properly. What about SNAP-vol1?

vxprint -rLtg adg SNAP-vol1
VxVM vxprint ERROR V-5-1-924 Record SNAP-vol1 not found

O my god! The "wrong" snapshot was destroyed! So, the first conclusion we draw from
our observations, is to always set the max_autogrow attribute to an integer multiple of the
autogrowby value plus the initial size of the cache volume. Another conclusion is not to
rely too much on the autogrow features of the space optimized snapshots: A final cache
overflow will destroy some of them. Furthermore, not tested by our investigations above,
multiple fast I/Os writing on the application or snapshot volumes may be faster than the
autogrow mechanism leading to destroyed or disabled snapshots. Consider this when defin-
ing the hwmark and autogrowby attribute values.

Note: VxVM 4.x did not destroy the snapshots, but disabled them. Nevertheless,
the effect was the same: You could reuse the snapshots only by deleting and recreating
them.

If you fear a soon cache overflow or your cache volume occupies too much storage,
you may manually resize the cache volume. The vxcache command provides appropri-
ate keywords for those operations: growcacheby, growcacheto, shrinkcacheby, and
shrinkcacheto.

Who tells VxVM, that the cache volume has reached or exceeded the high water mark
threshold? How is cache volume resizing performed? During the boot process, a script
named vxcached is started into background, which itself invokes vxnotify with the option
-C (cache events):

ptree $(pgrep -xu0 vxcached)
2626 /sbin/sh - /usr/lib/vxvm/bin/vxcached root
 3583 /sbin/sh - /usr/lib/vxvm/bin/vxcached root
 3584 vxnotify -C -w 15

We recognize a process architecture similar to the vxrelocd/vxsparecheck and
vxconfigbackupd processes explained in the troubleshooting chapter (see page 372).
vxnotify is informed by the kernel about the cache event and generates standard output
like the following:

grow on cachevolume cvol rid 0.8240 for cache cobjcvol rid 0.8254 dg adg dgid
1220261661.45.haensel

vxcached captures the output and invokes a command growing the cache volume by
the defined amount of space, if possible. If necessary, you may create your own cache event
handling with a self-written script comparable to vxcached - without Veritas support, of
course.

278

Point In Time Copies (Snapshots)

Cascading Snapshots9.3.11	

The full sized instant and the space optimized volume snapshots provide another useful
feature compared to the exclusively physical legacy full sized snapshot. Assume you want
to create multiple snapshots on the same application device, e.g. hourly on a database vol-
ume each day for database recovery strategies against logical database errors such as inad-
vertently dropped tables. At 11:15 pm your database writes new data to a volume region
still unchanged since mid-night. As you may remember, the legacy full-sized snapshot
mechanism needs to copy the original data set to ALL existing snapshot volumes, before
the new data set can be stored on the application volume. In our case, the database write
I/O will have to wait for 24 (0:00 am to 11:00 pm) copy-on-first-writes - a performance
drawback intolerable in enterprise environments!

In contrast, the instant snapshot mechanisms (full sized and space optimized) may
maintain a cascading relationship by using the keyword infrontof: The original data set
is copied only once to the latest snapshot device (full sized) or to the cache volume (space
optimized), and the DCL volume bitmaps of the snapshots reflect the new location of these
data - independent from the number of existing snapshots. We demonstrate the effect for
a space optimized snapshot, but narrow a little bit the number of snapshots created at an
hourly base:

vxassist -g adg make vol 1g layout=mirror nmirror=2 init=active
vxsnap -g adg prepare vol
vxassist -g adg make cvol 256m layout=mirror nmirror=2 init=active
vxmake -g adg cache cobjcvol cachevolname=cvol autogrow=on
vxcache -g adg start cobjcvol
vxsnap -g adg make source=vol/new=SP01-vol/cache=cobjcvol
vxsnap -g adg make source=vol/new=SP02-vol/\
 infrontof=SP01-vol/cache=cobjcvol
vxsnap -g adg make source=vol/new=SP03-vol/\
 infrontof=SP02-vol/cache=cobjcvol
vxsnap -g adg make source=vol/new=SP04-vol/\
 infrontof=SP03-vol/cache=cobjcvol
vxcache -g adg stat
CACHE NAME TOTAL(Mb) USED(Mb) (%) AVAIL(Mb) (%) SDCNT
cobjcvol 256 4 (1) 252 (98) 4
vxsnap -g adg -n print
NAME DG OBJTYPE SNAPTYPE PARENT PARENTDG SNAPDATE
vol adg vol - - - - -
SP01-vol adg vol spaceopt vol adg 2008/09/21 09:00
SP02-vol adg vol spaceopt vol adg 2008/09/21 10:00
SP03-vol adg vol spaceopt vol adg 2008/09/21 11:00
SP04-vol adg vol spaceopt vol adg 2008/09/21 12:00
vxprint -g adg -cF '%{assoc:-15} %creation_time' \
 -e 'sp_vol_name~/^SP0[1-4]-vol$/'
SP01-vol Tue Sep 21 09:00:00 2008
SP02-vol Tue Sep 21 10:00:00 2008

279

Features of and Improvements on the Raw Device Snapshot

SP03-vol Tue Sep 21 11:00:00 2008
SP04-vol Tue Sep 21 12:00:00 2008
dd if=/dev/zero of=/dev/vx/rdsk/adg/vol bs=1024k count=100
vxcache -g adg stat
CACHE NAME TOTAL(Mb) USED(Mb) (%) AVAIL(Mb) (%) SDCNT
cobjcvol 256 104 (40) 152 (59) 4

A Final Example for Volume Snapshots9.3.12	

For all those of our readers still not satisfied by the complexity of snapshot structures, we
provide the output of a vxprint command. Please decode! Note: This is a realistic scenario!
If most of the data centers do not use advanced VxVM volume architectures, then it does
probably not mean, that complex volumes are unnecessary, but that the administrators
need (better) Storage Foundation courses.

v SNAP-vol1 - ENABLED ACTIVE 419430400 SELECT - fsgen
pl SNAP-vol1-P01 SNAP-vol1 ENABLED ACTIVE 419430400 CONCAT - RW
sc SNAP-vol1-S01 SNAP-vol1-P01 cobjcvol 0 419430400 0 - ENA
dc SNAP-vol1_dco SNAP-vol1 SNAP-vol1_dcl

v SNAP-vol1_dcl - ENABLED ACTIVE 7488 SELECT - gen
pl SNAP-vol1_dcl-01 SNAP-vol1_dcl ENABLED ACTIVE 7488 CONCAT - RW
sd adg05-01 SNAP-vol1_dcl-01 adg05 87607552 7488 0 c1t1d4 ENA
sp vol1_snp SNAP-vol1 SNAP-vol1_dco

v SNAP-vol2 - ENABLED ACTIVE 419430400 SELECT - fsgen
pl SNAP-vol2-P01 SNAP-vol2 ENABLED ACTIVE 419430400 CONCAT - RW
sc SNAP-vol2-S01 SNAP-vol2-P01 cobjcvol 0 419430400 0 - ENA
dc SNAP-vol2_dco SNAP-vol2 SNAP-vol2_dcl

v SNAP-vol2_dcl - ENABLED ACTIVE 7488 SELECT - gen
pl SNAP-vol2_dcl-01 SNAP-vol2_dcl ENABLED ACTIVE 7488 CONCAT - RW
sd adg07-01 SNAP-vol2_dcl-01 adg07 87607552 7488 0 c1t1d6 ENA
sp vol2_snp SNAP-vol2 SNAP-vol2_dco

v vol1 - ENABLED ACTIVE 419430400 SELECT vol1-03 fsgen
pl vol1-03 vol1 ENABLED ACTIVE 419430400 STRIPE 2/512 RW

sv vol1-S01 vol1-03 vol1-L01 1 122107648 0/0 2/2 ENA
v2 vol1-L01 - ENABLED ACTIVE 122107648 SELECT - fsgen
p2 vol1-P01 vol1-L01 ENABLED ACTIVE 122107648 CONCAT - RW
s2 adg01-02 vol1-P01 adg01 0 122107648 0 c1t1d0 ENA
p2 vol1-P02 vol1-L01 ENABLED ACTIVE 122107648 CONCAT - RW
s2 adg03-02 vol1-P02 adg03 0 122107648 0 c1t1d2 ENA

280

Point In Time Copies (Snapshots)

sv vol1-S02 vol1-03 vol1-L02 1 87607552 0/122107648 2/2 ENA
v2 vol1-L02 - ENABLED ACTIVE 87607552 SELECT - fsgen
p2 vol1-P03 vol1-L02 ENABLED ACTIVE 87607552 CONCAT - RW
s2 adg05-02 vol1-P03 adg05 0 87607552 0 c1t1d4 ENA
p2 vol1-P04 vol1-L02 ENABLED ACTIVE 87607552 CONCAT - RW
s2 adg07-02 vol1-P04 adg07 0 87607552 0 c1t1d6 ENA

sv vol1-S03 vol1-03 vol1-L03 1 122107648 1/0 2/2 ENA
v2 vol1-L03 - ENABLED ACTIVE 122107648 SELECT - fsgen
p2 vol1-P05 vol1-L03 ENABLED ACTIVE 122107648 CONCAT - RW
s2 adg02-02 vol1-P05 adg02 0 122107648 0 c1t1d1 ENA
p2 vol1-P06 vol1-L03 ENABLED ACTIVE 122107648 CONCAT - RW
s2 adg04-02 vol1-P06 adg04 0 122107648 0 c1t1d3 ENA

sv vol1-S04 vol1-03 vol1-L04 1 87607552 1/122107648 2/2 ENA
v2 vol1-L04 - ENABLED ACTIVE 87607552 SELECT - fsgen
p2 vol1-P07 vol1-L04 ENABLED ACTIVE 87607552 CONCAT - RW
s2 adg06-02 vol1-P07 adg06 0 87607552 0 c1t1d5 ENA
p2 vol1-P08 vol1-L04 ENABLED ACTIVE 87607552 CONCAT - RW
s2 adg08-02 vol1-P08 adg08 0 87607552 0 c1t1d7 ENA
dc vol1_dco vol1 vol1_dcl

v vol1_dcl - ENABLED ACTIVE 7488 SELECT - gen
pl vol1_dcl-01 vol1_dcl ENABLED ACTIVE 7488 CONCAT - RW
sd adg06-01 vol1_dcl-01 adg06 87607552 7488 0 c1t1d5 ENA
pl vol1_dcl-02 vol1_dcl ENABLED ACTIVE 7488 CONCAT - RW
sd adg08-01 vol1_dcl-02 adg08 87607552 7488 0 c1t1d7 ENA
sp SNAP-vol1_snp vol1 vol1_dco

v vol2 - ENABLED ACTIVE 419430400 SELECT vol2-03 fsgen
pl vol2-03 vol2 ENABLED ACTIVE 419430400 STRIPE 2/512 RW

sv vol2-S01 vol2-03 vol2-L01 1 122107648 0/0 2/2 ENA
v2 vol2-L01 - ENABLED ACTIVE 122107648 SELECT - fsgen
p2 vol2-P01 vol2-L01 ENABLED ACTIVE 122107648 CONCAT - RW
s2 adg09-02 vol2-P01 adg09 0 122107648 0 c1t1d8 ENA
p2 vol2-P02 vol2-L01 ENABLED ACTIVE 122107648 CONCAT - RW
s2 adg11-02 vol2-P02 adg11 0 122107648 0 c1t1d10 ENA

sv vol2-S02 vol2-03 vol2-L02 1 87607552 0/122107648 2/2 ENA
v2 vol2-L02 - ENABLED ACTIVE 87607552 SELECT - fsgen
p2 vol2-P03 vol2-L02 ENABLED ACTIVE 87607552 CONCAT - RW
s2 adg13-02 vol2-P03 adg13 0 87607552 0 c1t1d12 ENA
p2 vol2-P04 vol2-L02 ENABLED ACTIVE 87607552 CONCAT - RW
s2 adg15-02 vol2-P04 adg15 0 87607552 0 c1t1d14 ENA

281

Features of and Improvements on the Raw Device Snapshot

sv vol2-S03 vol2-03 vol2-L03 1 122107648 1/0 2/2 ENA
v2 vol2-L03 - ENABLED ACTIVE 122107648 SELECT - fsgen
p2 vol2-P05 vol2-L03 ENABLED ACTIVE 122107648 CONCAT - RW
s2 adg10-02 vol2-P05 adg10 0 122107648 0 c1t1d9 ENA
p2 vol2-P06 vol2-L03 ENABLED ACTIVE 122107648 CONCAT - RW
s2 adg12-02 vol2-P06 adg12 0 122107648 0 c1t1d11 ENA

sv vol2-S04 vol2-03 vol2-L04 1 87607552 1/122107648 2/2 ENA
v2 vol2-L04 - ENABLED ACTIVE 87607552 SELECT - fsgen
p2 vol2-P07 vol2-L04 ENABLED ACTIVE 87607552 CONCAT - RW
s2 adg14-02 vol2-P07 adg14 0 87607552 0 c1t1d13 ENA
p2 vol2-P08 vol2-L04 ENABLED ACTIVE 87607552 CONCAT - RW
s2 adg16-02 vol2-P08 adg16 0 87607552 0 c1t1d15 ENA
dc vol2_dco vol2 vol2_dcl

v vol2_dcl - ENABLED ACTIVE 7488 SELECT - gen
pl vol2_dcl-01 vol2_dcl ENABLED ACTIVE 7488 CONCAT - RW
sd adg14-01 vol2_dcl-01 adg14 87607552 7488 0 c1t1d13 ENA
pl vol2_dcl-02 vol2_dcl ENABLED ACTIVE 7488 CONCAT - RW
sd adg16-01 vol2_dcl-02 adg16 87607552 7488 0 c1t1d15 ENA
sp SNAP-vol2_snp vol2 vol2_dco

co cobjcvol cvol ENABLED ACTIVE

v cvol cobjcvol ENABLED ACTIVE 209715200 SELECT cvol-03 fsgen
pl cvol-03 cvol ENABLED ACTIVE 209715200 STRIPE 2/128 RW

sv cvol-S01 cvol-03 cvol-L01 1 104857600 0/0 2/2 ENA
v2 cvol-L01 - ENABLED ACTIVE 104857600 SELECT - fsgen
p2 cvol-P01 cvol-L01 ENABLED ACTIVE 104857600 CONCAT - RW
s2 adg17-02 cvol-P01 adg17 0 104857600 0 c1t1d16 ENA
p2 cvol-P02 cvol-L01 ENABLED ACTIVE 104857600 CONCAT - RW
s2 adg19-02 cvol-P02 adg19 0 104857600 0 c1t1d18 ENA

sv cvol-S02 cvol-03 cvol-L02 1 104857600 1/0 2/2 ENA
v2 cvol-L02 - ENABLED ACTIVE 104857600 SELECT - fsgen
p2 cvol-P03 cvol-L02 ENABLED ACTIVE 104857600 CONCAT - RW
s2 adg18-02 cvol-P03 adg18 0 104857600 0 c1t1d17 ENA
p2 cvol-P04 cvol-L02 ENABLED ACTIVE 104857600 CONCAT - RW
s2 adg20-02 cvol-P04 adg20 0 104857600 0 c1t1d19 ENA

282

Point In Time Copies (Snapshots)

Veritas File System 9.4	 Based Snapshots

Cache Overflow on a Traditional Snapshot9.4.1	

The "Easy Sailing" section already described a snapshot mechanism based on VxFS, provid-
ing a completely logical snapshot with a mountable snapshot device storing only the origi-
nals of data overwritten by the application. We still didn't explain the snapshot behavior
when exceeding the capacity of the snapshot device. Do we have something comparable
to the autogrow feature of the volume based space optimized snapshot?

To get an answer, we will create a file system containing four files at 5 MB and an
appropriate snapshot device (10% in size of the original file system). We choose the
simplest volume layouts to indicate that we do not deal with volume based raw device
snapshots and their plex break-off:

vxassist -g adg make vol 100m
mkfs -F vxfs /dev/vx/rdsk/adg/vol
mount -F vxfs /dev/vx/dsk/adg/vol /mnt
for i in 1 2 3 4; do mkfile 5m /mnt/file$i; done
vxassist -g adg make snapvol 10m
mount -F vxfs -o snapof=/mnt /dev/vx/dsk/adg/snapvol /mnt_snap
ls -lA /mnt*
/mnt:
total 40960
-rw------T 1 root root 5242880 Sep 21 08:19 file1
-rw------T 1 root root 5242880 Sep 21 08:19 file2
-rw------T 1 root root 5242880 Sep 21 08:19 file3
-rw------T 1 root root 5242880 Sep 21 08:19 file4
drwxr-xr-x 2 root root 96 Sep 21 08:18 lost+found

/mnt_snap:
total 40960
-rw------T 1 root root 5242880 Sep 21 08:19 file1
-rw------T 1 root root 5242880 Sep 21 08:19 file2
-rw------T 1 root root 5242880 Sep 21 08:19 file3
-rw------T 1 root root 5242880 Sep 21 08:19 file4
drwxr-xr-x 2 root root 96 Sep 21 08:18 lost+found
df -k /mnt*
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/adg/vol 102400 22645 74777 24% /mnt
/dev/vx/dsk/adg/snapvol
 102400 22645 74771 24% /mnt_snap

Currently, the original and the snapshot file system contain exactly the same files, in
other words, the bitmap of the snapshot device only points to the data set of the original

283

Veritas File System Based Snapshots

file system. On first thought, we expect a cache overflow after removing two files from the
original file system:

rm /mnt/file1 /mnt/file2
ls -lA /mnt*
/mnt:
total 20480
-rw------T 1 root root 5242880 Sep 21 08:19 file3
-rw------T 1 root root 5242880 Sep 21 08:19 file4
drwxr-xr-x 2 root root 96 Sep 21 08:18 lost+found

/mnt_snap:
total 40960
-rw------T 1 root root 5242880 Sep 21 08:19 file1
-rw------T 1 root root 5242880 Sep 21 08:19 file2
-rw------T 1 root root 5242880 Sep 21 08:19 file3
-rw------T 1 root root 5242880 Sep 21 08:19 file4
drwxr-xr-x 2 root root 96 Sep 21 08:18 lost+found
df -k /mnt*
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/adg/vol 102400 12405 84377 13% /mnt
/dev/vx/dsk/adg/snapvol
 102400 22645 74771 24% /mnt_snap
od -cAd /mnt_snap/file1
0000000 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
5242880
od -cAd /mnt_snap/file2
0000000 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
5242880

Hmm! Nothing happened except for a proper handling by the snapshot still providing
the file contents of the files removed on the original file system (tested by an od read). We
enter into an impatient testing instead of a calm deliberation:

rm /mnt/file?
ls -lA /mnt*
/mnt:
total 0
drwxr-xr-x 2 root root 96 Sep 21 08:18 lost+found

/mnt_snap:
total 40960
-rw------T 1 root root 5242880 Sep 21 08:19 file1
-rw------T 1 root root 5242880 Sep 21 08:19 file2
-rw------T 1 root root 5242880 Sep 21 08:19 file3

284

Point In Time Copies (Snapshots)

-rw------T 1 root root 5242880 Sep 21 08:19 file4
drwxr-xr-x 2 root root 96 Sep 21 08:18 lost+found
df -k /mnt*
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/adg/vol 102400 2165 93978 3% /mnt
/dev/vx/dsk/adg/snapvol
 102400 22645 74771 24% /mnt_snap
od -cAd /mnt_snap/file?
0000000 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
20971520

What is this? Is it some kind of wizardry? No, because VxFS (as other file systems) did
not completely remove the file. Some file system basics: How is a file stored within the
file system? First, the directory file for the directory containing our file provides a mapping
between the file name and the inode number, all this occupying only a few bytes. Since the
directory file is updated by this operation, its inode reflects the new modification time, and
potentially a new block is assigned for it. Secondly, an inode is allocated (in VxFS as part
of an inode structural file, default size 256 bytes, configurable to 512 bytes) storing all the
file attributes (such as file type, modification time, owner, permissions) and the required
address-length-pairs (VxFS) to denote the physical location of the stored file contents.
Thirdly and finally, we need storage for the data blocks ("extents" in VxFS) whose size
summed up correspond to the file size (rounded up to the next block multiple).

What happens, if a file is removed from the file system? The entry mapping file name
and inode number is cleared (VxFS) within the directory file, and the modification time of
the directory file is updated. Furthermore, the inode, being now invalid, is removed from
the inode structural file (VxFS). But the predominant amount of storage, the data blocks
covering the file contents remain unchanged on the device as long as no new data are writ-
ten to the file system. That's why our removal of all four files only copied a few metadata
blocks to the snapshot device.

Furnished with the appropriate file system knowledge, we expect that overwriting
one file on the original file system will not exceed the limit of the snapshot storage. But
overwriting the second file will … Well, be in for a surprise!

mkfile 5m /mnt/file1
ls -lA /mnt*
/mnt:
total 10254
-rw------T 1 root root 5242880 Sep 21 09:18 file1
drwxr-xr-x 2 root root 96 Sep 21 08:18 lost+found

/mnt_snap:
total 40960
-rw------T 1 root root 5242880 Sep 21 08:19 file1
-rw------T 1 root root 5242880 Sep 21 08:19 file2
-rw------T 1 root root 5242880 Sep 21 08:19 file3
-rw------T 1 root root 5242880 Sep 21 08:19 file4

285

Veritas File System Based Snapshots

drwxr-xr-x 2 root root 96 Sep 21 08:18 lost+found
df -k /mnt*
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/adg/vol 102400 7285 89178 8% /mnt
/dev/vx/dsk/adg/snapvol
 102400 22645 74771 24% /mnt_snap
mkfile 5m /mnt/file2
ls -lA /mnt*
/mnt:
total 20480
-rw------T 1 root root 5242880 Sep 21 09:18 file1
-rw------T 1 root root 5242880 Sep 21 09:20 file2
drwxr-xr-x 2 root root 96 Sep 21 08:18 lost+found

/mnt_snap:
total 40960
-rw------T 1 root root 5242880 Sep 21 08:19 file1
-rw------T 1 root root 5242880 Sep 21 08:19 file2
-rw------T 1 root root 5242880 Sep 21 08:19 file3
-rw------T 1 root root 5242880 Sep 21 08:19 file4
drwxr-xr-x 2 root root 96 Sep 21 08:18 lost+found
df -k /mnt*
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/adg/vol 102400 12405 84377 13% /mnt
/dev/vx/dsk/adg/snapvol
 102400 22645 74771 24% /mnt_snap

Did we unfoundedly gloat with our file system knowledge? No, the piece of informa-
tion provided by the command output was stored still within the file system kernel cache.
But the system console shows a warning message, and an od command (or other read
accesses) is unable to read the file content (which produces another console message):

Sep 21 09:20:12 haensel vxfs: WARNING: msgcnt 1 mesg 028: V-2-28: vx_snap_alloc
- /dev/vx/dsk/adg/snapvol snapshot file system out of space

od -cAd /mnt_snap/file2
0000000

Sep 21 09:20:55 haensel vxfs: WARNING: msgcnt 2 mesg 032: V-2-32: vx_disable - /
dev/vx/dsk/adg/snapvol snapshot file system disabled

To sum up: A physical overflow of the snapshot device will disable the snapshot file
system making all snapped data inaccessible. There is no way to recover the snapshot, and,
what is more, there is no way to show the current quota of the snapshot device while the
snapshot is still enabled. So, it is a good idea to choose a somewhat oversized snapshot
device and not to rely for too long a period on its proper functioning. But don't forget the
main advantage of this kind of snapshot: It is cheap in storage and license costs.

286

Point In Time Copies (Snapshots)

Two final remarks: A file system based access to the snapshot via its mount point
(such as ls, find, tar) does not show any particularity, the snapshot behaves like a regular
mounted file system. A standard raw device access to the snapshot storage (e.g. by dd)
only gets the physical snapshot storage device data, because the pointing bitmap is not
understood. If you want to perform a valid backup of your snapshot file system close to raw
device access, you must use the vxdump tool (and for restore purposes the corresponding
vxrestore command).

Refreshing a VxFS snapshot (even a disabled one) is quite easy: Just unmount the snap-
shot and mount it once again. You may restore the file system content of the application
file system by simply copying the required files from the snapshot mount to the application
mount. If the amount of copied files will exceed the capacity of the snapshot device (the
snapshot will handle those copy operations as overwritten or new files on its original file
system), you must copy your files to a temporary staging file system. To delete a snapshot:
Unmount it and remove the snapshot device.

VxFS Storage Checkpoints9.4.2	

General Concept
Let's turn to a snapshot concept really deserving to be called an intelligent mechanism
suitable for enterprise needs! To understand its capabilities and advantages (and only a few
weaknesses), we recall the flexible layout of VxFS (in the following example on a 128 MB
volume with a 10 MB file on VxFS version 7 layout), as shown by the ncheck command:

ncheck -F vxfs -o sector= /dev/vx/rdsk/adg/vol
/dev/vx/rdsk/adg/vol:

sectors(204800) blocks(0)
----------------- -----------------
0/0-0/204799 0/0-0/102400

fileset fset match match devid/
name indx inode indx inode sectors name
---------- ---- ------ ---- ------ ------------- ------------------
STRUCTURAL 1 3 - 35 0/18-0/21 <fileset_header>
STRUCTURAL 1 4 1 - 0/22-0/29 <inode_alloc_unit>
STRUCTURAL 1 5 1 37 0/4640-0/4655 <inode_list>
STRUCTURAL 1 5 1 37 0/48-0/63 <inode_list>
STRUCTURAL 1 5 1 37 0/4624-0/4639 <inode_list>
STRUCTURAL 1 5 1 37 0/32-0/47 <inode_list>
STRUCTURAL 1 6 - - 0/30-0/31 <current_usage_tbl>
STRUCTURAL 1 7 - 39 0/64-0/65 <object_loc_tbl>
STRUCTURAL 1 8 - 40 0/80-0/1103 <device_config>
STRUCTURAL 1 9 - 41 0/1104-0/3151 <intent_log>
STRUCTURAL 1 11 - - 0/66-0/67 <fs_allocation_policy>

287

Veritas File System Based Snapshots

STRUCTURAL 1 32 - - 0/68-0/69 <history_log>
STRUCTURAL 1 33 - - 0/4614-0/4615 <device_label>
STRUCTURAL 1 33 - - 0/0-0/17 <device_label>
STRUCTURAL 1 35 - 3 0/4608-0/4611 <fileset_header>
STRUCTURAL 1 37 1 5 0/4640-0/4655 <inode_list>
STRUCTURAL 1 37 1 5 0/48-0/63 <inode_list>
STRUCTURAL 1 37 1 5 0/4624-0/4639 <inode_list>
STRUCTURAL 1 37 1 5 0/32-0/47 <inode_list>
STRUCTURAL 1 39 - 7 0/4612-0/4613 <object_loc_tbl>
STRUCTURAL 1 40 - 8 0/4656-0/5679 <device_config>
STRUCTURAL 1 41 - 9 0/1104-0/3151 <intent_log>
STRUCTURAL 1 64 999 - 0/70-0/77 <inode_alloc_unit>
STRUCTURAL 1 65 999 97 0/3152-0/3167 <inode_list>
STRUCTURAL 1 69 999 - 0/3168-0/3183 <bsd_quota>
STRUCTURAL 1 70 999 - 0/3184-0/3199 <bsd_quota>
STRUCTURAL 1 71 - - 0/78-0/79 <state_alloc_bitmap>
STRUCTURAL 1 72 - - 0/3200-0/3201 <extent_au_summary>
STRUCTURAL 1 73 - 105 0/3264-0/3279 <extent_map>
STRUCTURAL 1 73 - 105 0/3232-0/3263 <extent_map>
STRUCTURAL 1 73 - 105 0/3216-0/3231 <extent_map>
STRUCTURAL 1 97 999 65 0/3152-0/3167 <inode_list>
STRUCTURAL 1 105 - 73 0/3264-0/3279 <extent_map>
STRUCTURAL 1 105 - 73 0/3232-0/3263 <extent_map>
STRUCTURAL 1 105 - 73 0/3216-0/3231 <extent_map>
UNNAMED 999 4 - - 0/16384-0/36863 /file.10m
- - - - - 0/3202-0/3215 <free>
- - - - - 0/3280-0/4607 <free>
- - - - - 0/4616-0/4623 <free>
- - - - - 0/5680-0/16383 <free>
- - - - - 0/36864-0/204799 <free>

The first column reveals two file system instances to the raw device. First, the
STRUCTURAL file set carrying index 1 (column 2) accesses the "files" storing general file sys-
tem metadata such as the intent log, two object location tables to store the current posi-
tion of most metadata files, extent maps, and so on (last column; for redundancy purposes,
those metadata are addressed mostly by two inodes, see column 3 and 5). Furthermore,
the STRUCTURAL file set contains metadata for its own file set (match index 1 in column 4)
and for the current file system as visible by the virtual file system of the operating system
and in use by an application (match index 999). Secondly, we recognize the standard file
system for application purposes, called UNNAMED and carrying file set index 999, and, in our
example, the physical location of a 10 MB file (column 6; 0 before the slash denotes the
volume counter within a volume set, the numbers after the slash indicate start and end
sectors). Free space on the file system device is listed at the end.

Please recall the required procedure of other snapshot mechanisms when overwrit-
ing an existing file or data set: The original file or data set must be copied to a snapshot
container outside of the application device (snapshot device, cache device), before the new
file or data set can be written to the application device. We have a noticeable performance

288

Point In Time Copies (Snapshots)

drawback by additional I/Os.
The VxFS snapshot mechanism called "Storage Checkpoint" does not need a sepa-

rate snapshot container, because it uses free space within the same device for snapshot
purposes. To distinguish between the active file system and a snapshot file system, VxFS
simply adds another file system instance to the device (besides STRUCTURAL and UNNAMED)
arbitrarily named (we will choose "CP" and a time stamp) and with a partially own set
of metadata. As long as the file system remains unchanged, both file system instances'
metadata point to the same file contents.

fsckptadm create CP$(date +%H%M) /mnt
mount -F vxfs -o remount /dev/vx/dsk/adg/vol /mnt
ncheck -F vxfs -o sector= /dev/vx/rdsk/adg/vol
/dev/vx/rdsk/adg/vol:

sectors(204800) blocks(0)
----------------- -----------------
0/0-0/204799 0/0-0/102400

fileset fset match match devid/
name indx inode indx inode sectors name
---------- ---- ------ ---- ------ ------------- ------------------
STRUCTURAL 1 3 - 35 0/3280-0/3295 <fileset_header>
STRUCTURAL 1 3 - 35 0/18-0/21 <fileset_header>
STRUCTURAL 1 4 1 - 0/22-0/29 <inode_alloc_unit>
STRUCTURAL 1 5 1 37 0/4640-0/4655 <inode_list>
STRUCTURAL 1 5 1 37 0/48-0/63 <inode_list>
STRUCTURAL 1 5 1 37 0/4624-0/4639 <inode_list>
STRUCTURAL 1 5 1 37 0/32-0/47 <inode_list>
STRUCTURAL 1 6 - - 0/30-0/31 <current_usage_tbl>
STRUCTURAL 1 7 - 39 0/64-0/65 <object_loc_tbl>
STRUCTURAL 1 8 - 40 0/80-0/1103 <device_config>
STRUCTURAL 1 9 - 41 0/1104-0/3151 <intent_log>
STRUCTURAL 1 11 - - 0/66-0/67 <fs_allocation_policy>
STRUCTURAL 1 32 - - 0/68-0/69 <history_log>
STRUCTURAL 1 33 - - 0/4614-0/4615 <device_label>
STRUCTURAL 1 33 - - 0/0-0/17 <device_label>
STRUCTURAL 1 35 - 3 0/196608-0/196623 <fileset_header>
STRUCTURAL 1 35 - 3 0/4608-0/4611 <fileset_header>
STRUCTURAL 1 37 1 5 0/4640-0/4655 <inode_list>
STRUCTURAL 1 37 1 5 0/48-0/63 <inode_list>
STRUCTURAL 1 37 1 5 0/4624-0/4639 <inode_list>
STRUCTURAL 1 37 1 5 0/32-0/47 <inode_list>
STRUCTURAL 1 39 - 7 0/4612-0/4613 <object_loc_tbl>
STRUCTURAL 1 40 - 8 0/4656-0/5679 <device_config>
STRUCTURAL 1 41 - 9 0/1104-0/3151 <intent_log>
STRUCTURAL 1 64 999 - 0/70-0/77 <inode_alloc_unit>
STRUCTURAL 1 65 999 97 0/3152-0/3167 <inode_list>

289

Veritas File System Based Snapshots

STRUCTURAL 1 69 999 - 0/3168-0/3183 <bsd_quota>
STRUCTURAL 1 70 999 - 0/3184-0/3199 <bsd_quota>
STRUCTURAL 1 71 - - 0/78-0/79 <state_alloc_bitmap>
STRUCTURAL 1 72 - - 0/3200-0/3201 <extent_au_summary>
STRUCTURAL 1 73 - 105 0/3264-0/3279 <extent_map>
STRUCTURAL 1 73 - 105 0/3232-0/3263 <extent_map>
STRUCTURAL 1 73 - 105 0/3216-0/3231 <extent_map>
STRUCTURAL 1 74 1000 - 0/3208-0/3215 <inode_alloc_unit>
STRUCTURAL 1 75 1000 76 0/5680-0/5695 <inode_list>
STRUCTURAL 1 76 1000 75 0/5680-0/5695 <inode_list>
STRUCTURAL 1 81 1000 - 0/3296-0/3311 <bsd_quota>
STRUCTURAL 1 82 1000 - 0/3312-0/3327 <bsd_quota>
STRUCTURAL 1 97 999 65 0/3152-0/3167 <inode_list>
STRUCTURAL 1 105 - 73 0/3264-0/3279 <extent_map>
STRUCTURAL 1 105 - 73 0/3232-0/3263 <extent_map>
STRUCTURAL 1 105 - 73 0/3216-0/3231 <extent_map>
UNNAMED 999 4 - - 0/16384-0/36863 /file
- - - - - 0/3202-0/3207 <free>
- - - - - 0/3328-0/4607 <free>
- - - - - 0/4616-0/4623 <free>
- - - - - 0/5696-0/16383 <free>
- - - - - 0/36864-0/196607 <free>
- - - - - 0/196624-0/204799 <free>

Note the new file set match index 1000 in the fourth column of the ncheck output
providing a separate inode allocation unit, an inode list file addressed by two inodes, and
two BSD quota files. The first column does not list the new checkpoint, as it still does not
differ from the active file system. The command fsckptadm to create the snapshot will
be explained in more detail, of course. Please be aware, that ncheck operates on the raw
device, while fsckptadm defines the storage checkpoint based on the mount point, i.e. by
using the block device driver. In order to immediately demonstrate the effect of file system
modifications by ncheck, the file system caches need to be flushed to the raw device, which
is best performed by a remount (keeps read caches valid by flushing all dirty blocks).

Since we did not create another snapshot device, we must use the application block
device driver to mount the storage checkpoint by specifying the storage checkpoint
instance of the file system. But unlike the legacy VxFS snapshot, the time the checkpoint
was created defines its time stamp, not the time it was mounted. The storage checkpoint
may not be mounted to work as a snapshot.

fsckptadm list /mnt
/mnt
CP1203:
 ctime = Wed Sep 21 12:03:11 2008
 mtime = Wed Sep 21 12:03:11 2008
 flags = largefiles
mkdir /mnt_CP1203
mount -F vxfs -o ckpt=CP1203 /dev/vx/dsk/adg/vol:CP1203 /mnt_CP1203

290

Point In Time Copies (Snapshots)

ls -lA /mnt*
/mnt:
total 20480
-rw------- 1 root root 10485760 Sep 21 10:19 file
drwxr-xr-x 2 root root 96 Sep 21 10:17 lost+found

/mnt_CP1203:
total 0
-rw------- 1 root root 10485760 Sep 21 10:19 file
drwxr-xr-x 2 root root 96 Sep 21 10:17 lost+found
df -k /mnt*
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/adg/vol 102400 12449 84336 13% /mnt
/dev/vx/dsk/adg/vol:CP1203
 102400 12449 84336 13% /mnt_CP1203

A snapshot is intended to provide a frozen image in spite of write I/Os. Let's overwrite
our file! We do not use the mkfile command immediately on our file system, because
it shows some strange behavior when applied to a VxFS file system (zero device space
reserved, but not actually written).

mkfile 10m /tmp/file
cp /tmp/file /mnt
mount -F vxfs -o remount /dev/vx/dsk/adg/vol /mnt
ncheck -F vxfs -o sector= /dev/vx/rdsk/adg/vol
...
UNNAMED 999 4 - - 0/36864-0/40959 /file
UNNAMED 999 4 - - 0/49152-0/65535 /file
CP1203 1000 4 - - 0/16384-0/36863 /file
...
ls -lA /mnt*
/mnt:
total 20480
-rw------- 1 root root 10485760 Sep 21 12:55 file
drwxr-xr-x 2 root root 96 Sep 21 10:17 lost+found

/mnt_CP1203:
total 20480
-rw------- 1 root root 10485760 Sep 21 10:19 file
drwxr-xr-x 2 root root 96 Sep 21 10:17 lost+found
df -k /mnt*
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/adg/vol 102400 22689 74736 24% /mnt
/dev/vx/dsk/adg/vol:CP1203
 102400 22689 74736 24% /mnt_CP1203

The storage used by the original file (sectors 16384-36863, assigned to UNNAMED, see

291

Veritas File System Based Snapshots

the previous ncheck output) is now assigned to the storage checkpoint CP1203 only, i.e. the
metadata set of CP1203 keeps its information on that file showing its former content and
attributes. The "overwriting" new file got a previously free storage location (in our case
fragmented into two pieces due to the internal extent organization of VxFS) with own
attributes (visible at the different modification time stamp in the ls output).

VxFS Device

STRUCTURAL UNNAMED CP1203

Old File

New File

No "Copy on First Write" using VxFS Storage CheckpointsFigure 9-10:

Unlike the snapshot mechanisms we hitherto described in this chapter, the VxFS stor-
age checkpoint does NOT perform a copy-on-first-write I/O! The application does NOT
suffer from remarkable performance drawback! We will demonstrate some reasonable
exceptions from that general rule in the "Technical Deep Dive" section. But in spite of
some official Veritas/Symantec documentation, a copy-on-first-write is not the general I/O
rule (one of the extremely rare situations a company sells its products with deteriorating
information).

Storage Checkpoint Administration
Our example above already used the fsckptadm command to create a storage checkpoint.
To see some statistical details of the active file system and the storage checkpoint, you may
add the option -v ("verbose"):

fsckptadm -v create CP$(date +%H%M) /mnt
CP1503:
 ctime = Wed Sep 21 15:03:26 2008
 mtime = Wed Sep 21 15:03:26 2008
 flags = largefiles
 # of inodes = 32

292

Point In Time Copies (Snapshots)

 # of blocks = 0
 # of reads = 0
 # of writes = 0
 # of pushes = 0
 # of pulls = 0
 # of moves = 0
 # of move alls = 0
 # of merge alls = 0
 # of logged pushes = 0
 # of enospc retries = 0
 # of overlay bmaps = 0

 Unfortunately, the meaning of the output is not officially reported, and only few
entries are self-explaining. ctime denotes the creation time of the checkpoint, mtime the
"modification" time stamp of the last write access to the checkpoint (if mounted read-
write). Some file system or checkpoint attributes are listed under flags. The counters to
inodes, (data) blocks, (file) read and write accesses could give some useful hints on file
system usage, but are, needless to say, zeroed at checkpoint creation time. The same output
may be produced at a later stage, after some overwritten files or blocks on the UNNAMED file
system instance or some direct reads and writes to the checkpoint instance:

fsckptadm -v list /mnt
/mnt
CP1203:
 ctime = Wed Sep 21 12:03:11 2008
 mtime = Wed Sep 21 15:54:26 2008
 flags = largefiles
 # of inodes = 32
 # of blocks = 10240
 # of reads = 2
 # of writes = 1
 # of pushes = 0
 # of pulls = 0
 # of moves = 0
 # of move alls = 0
 # of merge alls = 0
 # of logged pushes = 0
 # of enospc retries = 0
 # of overlay bmaps = 0

Adding the option -l to the last mentioned command includes statistics to the UNNAMED
file system instance. Omitting all options provides a short overview of existing storage
checkpoints together with time stamps and flags (use fsckptadm info to display only one
checkpoint):

fsckptadm list /mnt
/mnt
CP1503:

293

Veritas File System Based Snapshots

 ctime = Wed Sep 21 15:03:26 2008
 mtime = Wed Sep 21 15:03:26 2008
 flags = largefiles
CP1203:
 ctime = Wed Sep 21 12:03:11 2008
 mtime = Wed Sep 21 15:54:26 2008
 flags = largefiles, mounted

If the cache volume of a space optimized volume snapshot gets out of space (autogrow
disabled or maximum size for autogrow reached), snapshot volumes become disabled or
are completely deleted. If copy-on-first-write operations overflow the cache device for the
legacy VxFS snapshot, the snapshot will be disabled. In both cases, the mentioned snapshot
behavior is not configurable. VxFS storage checkpoints provide a configurable flag called
removable. If the file system device holding the active file system and the storage check-
points as well runs out of space, you may decide what should happen: Should a checkpoint
be removed to free space in favor of the running application (flag removable set), or should
the checkpoint be kept, while application write I/Os are prohibited (removable cleared)?
You may specify a removable checkpoint by adding the option -r when creating it. But
at any time you may toggle the removable flag value by issuing a fsckptadm set|clear
command, as shown in the following, somewhat disappointing example (file system 100
MB in size):

mount -F vxfs /dev/vx/dsk/adg/vol /mnt
mkfile 20m /tmp/file
cp /tmp/file /mnt/file0
cp /tmp/file /mnt/file1
cp /tmp/file /mnt/file2
fsckptadm create Ckpt /mnt
mkdir /mnt_ckpt
mount -F vxfs -o ckpt=Ckpt /dev/vx/dsk/adg/vol:Ckpt /mnt_ckpt
df -k /mnt*
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/adg/vol 102400 63649 36336 64% /mnt
/dev/vx/dsk/adg/vol:Ckpt
 102400 63649 36336 64% /mnt_ckpt
cp /tmp/file /mnt/file0
df -k /mnt*
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/adg/vol 102400 84129 17136 84% /mnt
/dev/vx/dsk/adg/vol:Ckpt
 102400 84129 17136 84% /mnt_ckpt
cp /tmp/file /mnt/file1
cp: /mnt/file1: No space left on device
fsckptadm list /mnt
/mnt
Ckpt:
 ctime = Thu Sep 21 08:44:56 2008

294

Point In Time Copies (Snapshots)

 mtime = Thu Sep 21 08:44:56 2008
 flags = largefiles, mounted
fsckptadm set remove Ckpt /mnt
fsckptadm list /mnt
/mnt
Ckpt:
 ctime = Thu Sep 21 08:44:56 2008
 mtime = Thu Sep 21 08:44:56 2008
 flags = largefiles, removable, mounted
cp /tmp/file /mnt/file1
cp: /mnt/file1: No space left on device

Rats! Why is the checkpoint not removed in favor of the running application? Well, the
checkpoint is still in use, because it is mounted. Our hope is, that we only need to unmount
it in order to make it actually removable. Next try:

umount /mnt_ckpt
cp /tmp/file /mnt/file1
cp: /mnt/file1: No space left on device

Wow! That looks bad! We consult the manual page to fsckptadm and note an imprecise
expression:

Under some conditions, when the file system runs out of space, removable Storage
Checkpoints are deleted.

Consulting the VxFS Administrator's Guide with its vague allusions to that topic, we
get the impression, that database I/Os keeping the preallocated space for the database file
at the same position by overwriting only some blocks within the file will produce an ENOSPC
event ("Error: No space"). Let's start once again at the very beginning with database like
I/O using Perl (the Shell is unable to write into an existing file without changing the file
size):

umount /mnt
mkfs -F vxfs /dev/vx/rdsk/adg/vol
mount -F vxfs /dev/vx/dsk/adg/vol /mnt
mkfile 80m /tmp/file
cp /tmp/file /mnt
df -k /mnt
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/adg/vol 102400 84085 17178 84% /mnt
fsckptadm -r create Ckpt /mnt
fsckptadm list /mnt
/mnt
Ckpt:
 ctime = Thu Sep 21 09:23:21 2008
 mtime = Thu Sep 21 09:23:21 2008

295

Veritas File System Based Snapshots

 flags = largefiles, removable

The following Perl statement will overwrite a region of 10 MB at the beginning of the
database file (for details see the comments at the end of each line). Since our file system
device still holds about 17 MB free space, we do not expect a removal of the snapshot.

perl -e '
 $m10=1024*1024*10; # define 10 MB
 $Block="x" x $m10; # a block 10 MB in size
 open(FH,"+< /mnt/file") || die; # open read-write access by keeping the file
 sysseek(FH,0,0); # set file pointer to beginning of file
 syswrite(FH,$Block,$m10,0); # write 10 MB block
 close(FH);' # close file
df -k /mnt
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/adg/vol 102400 94377 7529 93% /mnt
ls -l /mnt
total 163840
-rw------- 1 root root 83886080 Sep 21 09:36 file
drwxr-xr-x 2 root root 96 Sep 21 09:17 lost+found
fsckptadm list /mnt
/mnt
Ckpt:
 ctime = Thu Sep 21 09:23:21 2008
 mtime = Thu Sep 21 09:23:21 2008
 flags = largefiles, removable

Correct, the file system usage increased by approximately 10 MB. Now the final blow!
The next 10 MB region will be overwritten, thus blasting the space still available within
the file system.

perl -e '
 $m10=1024*1024*10;
 $Block="x" x $m10;
 open(FH,"+< /mnt/file") || die;
 sysseek(FH,$m10,0); # set file pointer to 10 MB offset
 syswrite(FH,$Block,$m10,0);
 close(FH);'
df -k /mnt
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/adg/vol 102400 84101 17163 84% /mnt
ls -l /mnt
total 163840
-rw------- 1 root root 83886080 Sep 21 09:40 file
drwxr-xr-x 2 root root 96 Sep 21 09:17 lost+found
fsckptadm list /mnt
/mnt

296

Point In Time Copies (Snapshots)

fsckptadm -lv list /mnt
/mnt
UNNAMED:
 ctime = Thu Sep 21 09:17:57 2008
 mtime = Thu Sep 21 09:19:02 2008
 flags = largefiles, mounted,
 # of inodes = 32
 # of blocks = 84085
 # of reads = 0
 # of writes = 15
 # of pushes = 292
 # of pulls = 0
 # of moves = 0
 # of move alls = 0
 # of merge alls = 0
 # of logged pushes = 1
 # of enospc retries = 1
 # of overlay bmaps = 0

Finally we got it! We already noticed that the Perl script needed more time to execute
compared to the previous one due to checkpoint deletion. The file system space held by
the storage checkpoint was freed, the checkpoint removed, and the detailed output to the
active file system indeed displays an enospc ("Error: No space") event evoking the check-
point removal.

The sequence of removal in case of multiple checkpoints is determined by their age
("first in, first out") and the priority of nodata storage checkpoints (see next paragraph)
over data checkpoints.

Further flags of storage checkpoints are of less interest, so we will refer to them only in
few words. A checkpoint may be marked as non-mountable (flag nomount), either by creat-
ing it (option -u) or by setting it afterwards (fsckptadm set nomount …), thus prohibiting
undesired access by non-root users (a root user may always clear the nomount flag).

A nodata checkpoint provides a snapshot for the file system metadata (such as
file attributes, extent addresses), but not for file contents (option -n when creating,
fsckptadm set nodata … later). Issuing an ncheck command reveals, that only the
metadata set is created for the snapshot even by modified file contents. The snapped file
system metadata may serve, to mention an example, as a source to decide which files to
save by an incremental backup. Naturally, a nodata storage checkpoint can never be con-
verted to a data checkpoint.

As an intelligent snapshot mechanism, multiple VxFS storage checkpoints do not
produce an overwhelming amount of additional I/Os. If a file is completely replaced by a
new version, only the UNNAMED file system instance redirects its pointer to the new file
version, while all existing checkpoints simply remain unchanged. If a VxFS checkpointed
file system indeed performs a copy-on-first-write (e.g. by a database I/O, see the "Technical
Deep Dive" section), the current file system instance keeps its file data block addresses, and
all checkpoints redirect their addresses to the saved file block.

297

Veritas File System Based Snapshots

You cannot refresh a storage checkpoint to the current data set of the active file
system by a single step. Instead, create a new storage checkpoint and, if you need to free
space on the device or do not want to keep previous storage checkpoints, simply remove
them.

Recovering a file system by a storage checkpoint may accomplished by three ways:

1.	 Mount the appropriate checkpoint to a temporary mount point (if it is not already
mounted) and copy only those files to the application mount point you want to
recover. A complete file system recovery using this procedure is space consuming,
because the current files of the application mount are kept within the device for the
still existing checkpoints. Destroy all unnecessary checkpoints to get more space.

2.	 Unmount the regular file system instance for the application (probably UNNAMED)
and mount the desired checkpoint at the application mount point. Then restart (and
recover) your application. All checkpoints created after the currently mounted one
lose their snapshot functionality. Therefore, they should be removed. Unfortunately
the checkpoint based file system instance remains a checkpoint, so we need to
mount it by specifying its checkpoint name (and accordingly to modify entries in
/etc/vfstab or in cluster resource configurations, and so on).

3.	 Therefore, a complete file system recovery by reactivating a storage checkpoint
should also link the default file system instance to the checkpoint, not to UNNAMED
anymore. VxFS provides an executable to do so:

fsckptadm list /mnt
/mnt
CP1200:
 ctime = Sun Sep 28 12:00:00 2008
 mtime = Sun Sep 28 12:00:00 2008
 flags = largefiles
CP1100:
 ctime = Sun Sep 28 11:00:00 2008
 mtime = Sun Sep 28 11:00:00 2008
 flags = largefiles
CP1000:
 ctime = Sun Sep 28 10:00:00 2008
 mtime = Sun Sep 28 10:00:00 2008
 flags = largefiles
CP0900:
 ctime = Sun Sep 28 09:00:00 2008
 mtime = Sun Sep 28 09:00:00 2008
 flags = largefiles
umount -f /mnt
fsckpt_restore -l /dev/vx/dsk/adg/vol
/dev/vx/dsk/adg/vol:

UNNAMED:
 ctime = Sun Sep 28 08:53:10 2008

298

Point In Time Copies (Snapshots)

 mtime = Sun Sep 28 08:53:10 2008
 flags = largefiles, file system root

CP1200:
 ctime = Sun Sep 28 12:00:00 2008
 mtime = Sun Sep 28 12:00:00 2008
 flags = largefiles

CP1100:
 ctime = Sun Sep 28 11:00:00 2008
 mtime = Sun Sep 28 11:00:00 2008
 flags = largefiles

CP1000:
 ctime = Sun Sep 28 10:00:00 2008
 mtime = Sun Sep 28 10:00:00 2008
 flags = largefiles

CP0900:
 ctime = Sun Sep 28 09:00:00 2008
 mtime = Sun Sep 28 09:00:00 2008
 flags = largefiles

Select storage checkpoint for restore operation
 or <Control/D> (EOF) to exit
 or <Return> to list storage checkpoints: CP1000
CP1000:
 ctime = Sun Sep 28 10:00:00 2008
 mtime = Sun Sep 28 10:00:00 2008
 flags = largefiles

UX:vxfs fsckpt_restore: WARNING: V-3-24640: Any file system changes or storage
checkpoints
made after Sun Sep 28 10:00:00 2008 will be lost.

Restore the file system from storage checkpoint CP1000 ? (ynq) y
(Yes)
UX:vxfs fsckpt_restore: INFO: V-3-23760: File system restored from CP1000
mount -F vxfs /dev/vx/dsk/adg/vol /mnt
fsckptadm -l list /mnt
/mnt
CP1000:
 ctime = Sun Sep 28 10:00:00 2008
 mtime = Sun Sep 28 12:36:19 2008
 flags = largefiles, mounted,
CP0900:

299

Veritas File System Based Snapshots

 ctime = Sun Sep 28 09:00:00 2008
 mtime = Sun Sep 28 09:00:00 2008
 flags = largefiles

300

Point In Time Copies (Snapshots)

Technical Deep Dive

Creating a Full Sized Volume Snapshot 9.5	
Using Low-Level Commands
In order to create a snapshot without data change object (DCO) and data change log vol-
ume (DCL) we may issue some basic VxVM commands. This kind of snapshot, however, does
not provide several advanced features of the standard snapshots created by the vxsnap
command: no fast mirror resynchronization, no instant availability or instant refresh of the
snapshot, and no space optimizing strategies. Our basic snapshot procedure is a simple plex
break-off and, when reattaching it to its original volume, a simple plex attach operation.
Our example will be supplemented with some vxstat commands to verify procedure and
amount of synchronization.

Step 1	 We create the application volume containing two mirrors, place a file
system on it, and mount it to simulate application access. The mirrors are completely syn-
chronized by a read-writeback thread.

vxstat -g adg -r
vxassist -g adg make vol 1g layout=mirror nmirror=2
vxstat -g adg -f ab vol
 ATOMIC COPIES READ-WRITEBACK
TYP NAME OPS BLOCKS AVG(ms) OPS BLOCKS AVG(ms)
vol vol 0 0 0.0 1024 2097152 15.5
mkfs -F vxfs /dev/vx/rdsk/adg/vol
mount -F vxfs /dev/vx/dsk/adg/vol /mnt

Step 2	 We attach another plex intended to become our snapshot plex. Since the
new plex still does not contain valid volume data, VxVM starts an atomic copy synchro-
nization thread. We must await complete synchronization, until the plex may be used for
snapshot purposes.

vxstat -g adg -r
vxassist -g adg mirror vol
vxstat -g adg -f ab vol
 ATOMIC COPIES READ-WRITEBACK
TYP NAME OPS BLOCKS AVG(ms) OPS BLOCKS AVG(ms)
vol vol 1024 2097152 12.9 0 0 0.0

301

Creating a Full Sized Volume Snapshot Using Low-Level Commands

Step 3	 A frozen copy of volume data might be achieved by offlining one plex.
But an offlined plex is twofold unavailable: its offline state prevents VxVM from reading
and writing to the plex, and there is no device driver to this plex enabling application
access. So, we dissociate the plex from the volume immediately stopping application I/O to
it by the volume driver. Note the addition of the -V option to the plex dissociating com-
mand. It shows the basic vxplex command used for the volume usage type fsgen without
actually dissociating the plex. We will come back to the meaning of the usage type.

vxprint -rtg adg
[…]
v vol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA
pl vol-03 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-01 vol-03 adg03 0 2097152 0 c1t1d2 ENA
vxplex -g adg -V dis vol-03
/usr/lib/vxvm/type/fsgen/vxplex -U fsgen -g adg -g adg -- dis vol-03
vxplex -g adg dis vol-03
vxprint -rtg adg
[…]
pl vol-03 - DISABLED IOFAIL 2097152 CONCAT - RW
sd adg03-01 vol-03 adg03 0 2097152 0 c1t1d2 ENA

v vol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA

Step 4	 A dissociated plex is still unavailable to an application due to its miss-
ing device driver. Only volumes provide a driver. Furthermore, a dissociated plex is forced
to enter the kernel DISABLED state. In order to enable data availability, we add an empty
volume to the dissociated plex and start both, plex and volume as well.

vxmake -g adg vol SNAP-vol plex=vol-03 usetype=fsgen
vxvol -g adg start SNAP-vol
vxprint -rtg adg
[…]
v SNAP-vol - ENABLED ACTIVE 2097152 ROUND - fsgen
pl vol-03 SNAP-vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-01 vol-03 adg03 0 2097152 0 c1t1d2 ENA

v vol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA

302

Point In Time Copies (Snapshots)

pl vol-02 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA

Step 5	 We dissociated the plex while the associated volume was mounted. In
real life, you normally create a snapshot on a running application. Consequently, the data
set presented by a snapshot volume is inconsistent from the application’s point of view. In
our example, the volume usetype fsgen forced the execution of a special vxplex command
(see option -V above) triggering the file system layer to flush dirty kernel memory pages to
the volume before dissociating it. Nevertheless, we expect our file system data set being
inconsistent at least for one reason: the file system is marked as ACTIVE by the main super
block simply due to its mounted state. So, we issue a file system check command, which
will run really fast by replaying the file system log. However, our example working on
Storage Foundation 5.0 MP1 does not need a file system check. Note that most software
and patch versions of SF automatically issue a file system check after snapshot creation or
plex dissociation.

fsck -F vxfs -y /dev/vx/rdsk/adg/SNAP-vol
file system is clean - log replay is not required

Step 6	 The snapshot volume may be mounted now and, for instance, used by
backup tools. Afterwards, you could want to delete the snapshot volume. Our example
demonstrates the steps necessary to reattach the snapshot to its original volume. First,
we stop the snapshot volume and dissociate its plex once again, but this time from its
snapshot volume. The empty volume should be deleted to prevent error messages from
inadvertent volume access (as long as the volume exists as a standard volume, there is a
driver on it).

mkdir /mnt_snap
mount -F vxfs /dev/vx/dsk/adg/SNAP-vol /mnt_snap
df -k /mnt*
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/adg/vol 1048576 17749 966408 2% /mnt
/dev/vx/dsk/adg/SNAP-vol
 1048576 17749 966408 2% /mnt_snap
[…]
umount /mnt_snap
vxvol -g adg stop SNAP-vol
vxplex -g adg dis vol-03
vxedit -g adg rm SNAP-vol
vxprint -rtg adg
[…]
pl vol-03 - DISABLED - 2097152 CONCAT - RW
sd adg03-01 vol-03 adg03 0 2097152 0 c1t1d2 ENA

v vol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA

303

Legacy Snapshot Commands

pl vol-02 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA

Step 7	 Reattaching the plex to its original volume means incrementing the
number of data mirrors within the volume. Since our “orphaned” plex contains stale appli-
cation data (to an amount unknown to VxVM), a full atomic copy synchronization thread
is inevitable.

vxstat -g adg -r
vxplex -g adg att vol vol-03
vxstat -g adg -f ab vol
 ATOMIC COPIES READ-WRITEBACK
TYP NAME OPS BLOCKS AVG(ms) OPS BLOCKS AVG(ms)
vol vol 1024 2097152 12.7 0 0 0.0
vxprint -rtg adg
[…]
v vol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA
pl vol-03 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-01 vol-03 adg03 0 2097152 0 c1t1d2 ENA

Legacy Snapshot Commands9.6	
The powerful vxsnap command was introduced in VxVM 4.0 to simplify administration of
former snapshot mechanisms and especially to manage the new snapshot concepts: full
sized instant snapshot and space optimized instant snapshot with shared cache volume.
But vxsnap did not and still does not cover all VxVM 3.x snapshot techniques. Especially
the kernel based fast mirror resynchronization was dropped from the vxsnap capabilities
in favor to an exclusively DCO based snapshot architecture. Therefore, it is still worth to
explain pre-vxsnap snapshot techniques and their command line interface.

Full Sized Snapshot without FMR9.6.1	

In the previous section, we already introduced the basic snapshot procedure of a so-called
third mirror break-off. We recall that the snapshot was not instantly available, that it
needed full resynchronization when reattaching it to its original volume (no fast mirror
resynchronization), that it took a 100% volume size portion of storage, and that an imme-
diate refresh by keeping the separate snapshot volume was impossible.

In VxVM 3.0, a new vxassist subtool was implemented to serve as an easy to handle
interface to that snapshot procedure.

1.	 Adding a mirror-plex for snapshot purposes (a simple vxassist mirror command, see

304

Point In Time Copies (Snapshots)

step 2 above; we assume the twofold mirrored application volume already created),
is replaced by vxassist snapstart. In order to verify the amount of synchroniza-
tion I/Os, we reset the kernel I/O counters of VxVM and display atomic copy I/Os, as
usual:

vxstat –g adg -r
vxassist -g adg snapstart vol
vxstat -g adg -f a vol
 ATOMIC COPIES
TYP NAME OPS BLOCKS AVG(ms)
vol vol 1024 2097152 12.7
vxprint -rtg adg
[…]
v vol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA
pl vol-03 vol ENABLED SNAPDONE 2097152 CONCAT - WO
sd adg03-01 vol-03 adg03 0 2097152 0 c1t1d2 ENA

	 Note two small differences to the basic mirror tool: The new plex is marked for
snapshot purposes by its application state SNAPDONE to tell the next step (creating
a snapshot) which plex to dissociate. Furthermore, its mode is restricted to WO which
stands for write-only: New volume data will keep the snapshot prepared plex up-to-
date, but this plex, in most cases only a temporary member of the volume, will not
modify the regular volume read policy.

2.	 Steps 3 to 4 (plex dissociation, volume frame, volume start), in most VxVM versions
also step 5 (automatic file system check) of the previous chapter are replaced by:

vxassist -g adg snapshot vol
vxprint -rtg adg
[…]
v SNAP-vol - ENABLED ACTIVE 2097152 ROUND - fsgen
pl vol-03 SNAP-vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-01 vol-03 adg03 0 2097152 0 c1t1d2 ENA

v vol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA

	 If you do not agree with the snapshot volume name automatically created by VxVM,
you may specify it at snapshot creation:

305

Legacy Snapshot Commands

vxassist -g adg snapshot vol svol

3.	 Having terminated our duties with the snapshot volume, we might decide to reattach
the snapshot plex to its original volume (see steps 6 and 7 above):

vxstat –g adg -r
vxassist -g adg snapback SNAP-vol
vxstat -g adg -f a vol
 ATOMIC COPIES
TYP NAME OPS BLOCKS AVG(ms)
vol vol 1024 2097152 12.8
vxprint -rtg adg
[…]
v vol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA
pl vol-03 vol ENABLED SNAPDONE 2097152 CONCAT - WO
sd adg03-01 vol-03 adg03 0 2097152 0 c1t1d2 ENA

	 The command recreates the volume layout as it was at the end of step 1. Even the
plex state is SNAPDONE again, and read access to it is prohibited. We did not need
to specify the source volume. Obviously, somewhere, the snapshot relation between
application volume and its snapshot volume was kept. But where? No snap objects
are shown by vxprint, even by displaying all attributes (options -a or -m). The rela-
tion was stored in the kernel memory of VxVM. Thus, a system reboot or a disk group
deport would have destroyed the snapshot relation.

4.	 Step 3 could be replaced by other procedures, which we will mention in few words.
If you want to redirect the resynchronization, that is, from the snapshot plex to the
original volume (don't forget to terminate application access), add the appropriate
option:

vxassist -g adg –o resyncfromreplica snapback SNAP-vol

	 After a system reboot or a disk group deport and re-import, the snapshot volume
looks like and is indeed a volume completely independent from its former source
volume. Advertently clearing the snapshot relation between both volumes does not
require, of course, disk group deport and import, simply issue:

vxassist –g adg snapclear vol [SNAP-vol]

	 Removing a snapshot volume does not differ from deleting a standard volume, in

306

Point In Time Copies (Snapshots)

spite of the snapshot relation. Use one of the following commands:

vxedit -g adg -rf rm SNAP-vol
vxassist -g adg remove volume SNAP-vol

Full Sized Snapshot with Kernel Based FMR9.6.2	

The simple snapshot mechanism lacks a very important feature. Even though in many cases
only a small percentage of data has changed between the original and the snapshot vol-
ume (either by writing to the original volume or to the snapshot volume), all volume data
are synchronized when reattaching the snapshot plex. The advanced snapshot techniques
explained in the main parts of this chapter use a DCL volume linked to the application
volume by a DC object to track changed regions in a bitmap. In VxVM 3.1, another way
to log modified regions of the volumes (original and snapshot) was introduced: a bitmap
within the kernel memory. Well, we already know, that memory based region tracking is lost
in case of a system reboot or disk group deport. But, not to forget an advantage, a kernel
memory based bitmap does not degrade the performance of an application volume.

Either kernel or DCL volume based bitmap: We must tell the volume that we want to
activate fast mirror resynchronization (FMR). The volume attribute fastresync must be
set before dissociating the snapshot plex from its volume. For an already existing volume,
enter:

vxprint -g adg -F %fastresync vol
off
vxvol -g adg set fastresync=on vol
vxprint -g adg -F %fastresync vol
on

To set the fastresync attribute at volume creation time, issue:

vxassist -g adg make vol 1g layout=mirror nmirror=2 fastresync=on

The following example, once again, demonstrates the effect of the kernel FMR bitmap.
We modify application AND snapshot volume by 10 MB, but at non-overlapping regions.
Thus, we expect synchronization of only 20 MB totally.

vxassist -g adg make vol 1g layout=mirror nmirror=2 fastresync=on \
 init=active
vxassist -g adg snapstart vol
vxassist -g adg snapshot vol
dd if=/dev/zero of=/dev/vx/rdsk/adg/vol bs=1024k count=10
dd if=/dev/zero of=/dev/vx/rdsk/adg/SNAP-vol bs=1024k count=10 oseek=10
vxstat -g adg -r
vxassist -g adg snapback SNAP-vol
vxstat -g adg -f a vol
 ATOMIC COPIES

307

Legacy Snapshot Commands

TYP NAME OPS BLOCKS AVG(ms)
vol vol 20 40960 13.0

Full Sized Snapshot with DCL Volume Based FMR 9.6.3	
Version 0

The DCO structure is not an invention of VxVM 4.0, though this software version extended
the DCO capabilities. Its basic task in VxVM 3.2 was to allow for fast mirror resynchroniza-
tion in case of a snapback operation by persistently storing the required region bitmap in
a DCL volume, not in the kernel memory, thus enabling offhost processing combined with
the simultaneously introduced “Disk Group Split and Join” (DGSJ) feature. Adding DCO
capabilities to a volume was a three-steps procedure with unique sequence: First, add the
DCO structure, then enable FMR on the volume, and finally create the snapshot plex (or
convert an existing plex to a snapshot plex). See the commands in detail:

vxassist -g adg addlog vol logtype=dco
vxvol -g adg set fastresync=on vol
vxassist -g adg snapstart vol
vxprint -rLtg adg
[…]
v vol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA
pl vol-03 vol ENABLED SNAPDONE 2097152 CONCAT - WO
sd adg03-01 vol-03 adg03 0 2097152 0 c1t1d2 ENA
dc vol_dco vol vol_dcl

v vol_dcl - ENABLED ACTIVE 144 SELECT - gen
pl vol_dcl-01 vol_dcl ENABLED ACTIVE 144 CONCAT - RW
sd adg01-02 vol_dcl-01 adg01 2097152 144 0 c1t1d0 ENA
pl vol_dcl-02 vol_dcl ENABLED ACTIVE 144 CONCAT - RW
sd adg02-02 vol_dcl-02 adg02 2097152 144 0 c1t1d1 ENA
pl vol_dcl-03 vol_dcl DISABLED DCOSNP 144 CONCAT - RW
sd adg03-02 vol_dcl-03 adg03 2097152 144 0 c1t1d2 ENA

Replace the last command, if you want to mark an existing plex for snapshot purposes,
by the following:

vxplex -g adg -o dcoplex=vol_dcl-03 convert state=SNAPDONE vol-03

If you start from scratch, you may specify the first two snapshot related steps at vol-
ume creation time:

vxassist -g adg make vol 1g layout=mirror,log nmirror=2 fastresync=on \

308

Point In Time Copies (Snapshots)

 logtype=dco

The snapshot and snapback commands are identical to the earlier snapshot techniques.
Note the unusual small size of the DCL volume compared to the advanced vxsnap created
DCL volume. This makes a difference to be explained.

DCO Version 0 and Version 209.7	
The data change object linking the DCL volume to its application volume provides some
interesting details. Issue the following command first on a legacy DC object created by
vxassist addlog, then on a vxsnap built DC object:

vxassist -g adg make vol00 1g layout=mirror,log nmirror=2 fastresync=on \
 logtype=dco init=active
vxassist -g adg make vol20 1g layout=mirror,log nmirror=2 init=active
vxsnap -g adg prepare vol20
vxprint -g adg -m vol00_dco > /tmp/dco00
vxprint -g adg -m vol20_dco > /tmp/dco20
sdiff -w 80 /tmp/dco*
dco vol00_dco | dco vol20_dco
[…]
 parent_vol=vol00 | parent_vol=vol20
 log_vol=vol00_dcl | log_vol=vol20_dcl
 comment="DCO for vol00 | comment="DCO for vol20
[…]
 p_flag_move=off p_flag_move=off
 badlog=off badlog=off
[…]
 sp_num=0 sp_num=0
 regionsz=0 | regionsz=128
 version=0 | version=20
 drl=off | drl=on
 sequentialdrl=off sequentialdrl=off
 drllogging=off | drllogging=on
 snap= snap=

Besides the object names and the record IDs skipped in the output above, we notice
three major differences: the version number (0 and 20), the configurable region size and
the ability to serve as dirty region log in version 20.

Let's start by examining the last feature. As we already know, a DRL is intended to
track region changes in a mirrored volume for a certain amount of time in order to speed
up resynchronization after a system crash. We will, by all means, just simulate a system
crash. But nevertheless, be sure to carry out the following procedure in a test environment
and to unmount all non-OS file systems except for our test volumes beforehand. Console
access is a prerequisite.

309

DCO Version 0 and Version 20

mkfs -F vxfs /dev/vx/rdsk/adg/vol00
mkfs -F vxfs /dev/vx/rdsk/adg/vol20
mkdir /mnt00 /mnt20
mount -F vxfs /dev/vx/dsk/adg/vol00 /mnt00
mount -F vxfs /dev/vx/dsk/adg/vol20 /mnt20
vxprint -g adg -F '%name %devopen' vol00 vol20
vol00 on
vol20 on
uadmin 5 0
panic[cpu513]/thread=300046b4b20: forced crash dump initiated at user request
[…]
dumping to /dev/dsk/c0t2d0s1, offset 215220224, content: kernel
[…]
ok boot -s
[…]
Requesting System Maintenance Mode
SINGLE USER MODE

Root password for system maintenance (control-d to bypass): password
vxprint -rLtg adg
[…]
v vol00 - ENABLED NEEDSYNC 2097152 SELECT - fsgen
pl vol00-01 vol00 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol00-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol00-02 vol00 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol00-02 adg02 0 2097152 0 c1t1d1 ENA
dc vol00_dco vol00 vol00_dcl

v vol00_dcl - ENABLED NEEDSYNC 144 SELECT - gen
pl vol00_dcl-01 vol00_dcl ENABLED ACTIVE 144 CONCAT - RW
sd adg01-02 vol00_dcl-01 adg01 2097152 144 0 c1t1d0 ENA
pl vol00_dcl-02 vol00_dcl ENABLED ACTIVE 144 CONCAT - RW
sd adg02-02 vol00_dcl-02 adg02 2097152 144 0 c1t1d1 ENA

v vol20 - ENABLED NEEDSYNC 2097152 SELECT - fsgen
pl vol20-01 vol20 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-03 vol20-01 adg01 2097296 2097152 0 c1t1d0 ENA
pl vol20-02 vol20 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-03 vol20-02 adg02 2097296 2097152 0 c1t1d1 ENA
dc vol20_dco vol20 vol20_dcl

v vol20_dcl - ENABLED NEEDSYNC 544 SELECT - gen
pl vol20_dcl-01 vol20_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg01-04 vol20_dcl-01 adg01 4194448 544 0 c1t1d0 ENA
pl vol20_dcl-02 vol20_dcl ENABLED ACTIVE 544 CONCAT - RW

310

Point In Time Copies (Snapshots)

sd adg02-04 vol20_dcl-02 adg02 4194448 544 0 c1t1d1 ENA
vxprint -g adg -F '%name %devopen' vol00 vol20
vol00 off
vol20 off
vxstat -g adg -f ab
 ATOMIC COPIES READ-WRITEBACK
TYP NAME OPS BLOCKS AVG(ms) OPS BLOCKS AVG(ms)
vol vol00 0 0 0.0 0 0 0.0
vol vol00_dcl 0 0 0.0 1 144 10.0
vol vol20 0 0 0.0 0 0 0.0
vol vol20_dcl 0 0 0.0 1 544 10.0
vxstat -g adg -r
exit
svc.startd: Returning to milestone all.
[…]

Please be patient until the boot process at the end of the legacy run-level 2
(vxvm-recover) has started the volume recovery of the OS volumes, before it turns to
application volumes. During the early stage of the boot process, only the DCL volumes
were synchronized.

vxstat -g adg -f ab
 ATOMIC COPIES READ-WRITEBACK
TYP NAME OPS BLOCKS AVG(ms) OPS BLOCKS AVG(ms)
vol vol00 0 0 0.0 16384 2097152 1.3
vol vol00_dcl 0 0 0.0 2 144 5.0
vol vol20 0 0 0.0 0 0 0.0
vol vol20_dcl 0 0 0.0 9 592 0.0

Indeed! Volume vol20 furnished with a DC object of version 20 did not synchronize the
data volume because we had not written data to it immediately before the system crash
(in case of I/O just a very small portion of the volume would have been synchronized). On
the other side, the DC object of version 0 obviously does not provide dirty region logging, it
has been completely resynchronized. Adding the legacy DRL plex to the application volume
would cover this task.

We cannot answer the question probably arising why the DCL volumes were synchro-
nized twice, the first time during the single-user mode (vxvm-startup2), the second time
during the general volume resynchronization (vxvm-recover). Twofold synchronization is
harmless to data consistency and, given the small size of the DCL volumes, means a system
load you do not need to bother about.

Do you remember that a data plex attached by the vxsnap addmir command got the
state pair ENABLED/SNAPDONE, while the attached DCL plex got DISABLED/DCOSNP as
long as the snapshot is not performed? Well, the data plex must remain ENABLED, oth-
erwise it would not be kept up-to-date. But the DCL plex attached for snapshot purposes
may not be updated for dirty region log or temporary plex detach tasks, because we
already have two active DCL plexes providing sufficient redundancy. Therefore, the DCL plex
designed to be broken off together with the snapshot data plex got the DISABLED state to

311

DCO Version 0 and Version 20

avoid unnecessary DCL plex I/O.

DC objects of version 0 or 20 just track changes to a volume in case of a snapshot
plex break-off depending on the software version and the license you installed. An enter-
prise license implements another feature we all were waiting a long time for: optimized
synchronization in case of temporary disk outage still keeping the volume enabled due to
healthy data plexes. Assume a Dual data center scenario with volumes neatly mirrored over
both sites. Furthermore, assume a temporary power failure at one site. The applications
will continue to produce new data, but only on the remaining site. After powering back
the failed site, the mirrors just differ to a certain amount of data (maybe 5%). The (fully
licensed) DC object kept track of write changes to the volumes during the plexes' detach
and will resynchronize just the affected regions. Regarding the technical behavior, a DC
object version 0 differs only slightly from that of version 20.

dd if=/dev/rdsk/c1t1d1s2 of=/var/tmp/c1t1d1s2 bs=128k iseek=1 count=8
dd if=/dev/zero of=/dev/rdsk/c1t1d1s2 bs=128k oseek=1 count=8
vxconfigd -k
vxdisk -g adg list
DEVICE TYPE DISK GROUP STATUS
c1t1d0s2 auto:cdsdisk adg01 adg online
- - adg02 adg failed was:c1t1d1s2
vxprint -rLtg adg
[…]
v vol00 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol00-01 vol00 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol00-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol00-02 vol00 DISABLED NODEVICE 2097152 CONCAT - RW
sd adg02-01 vol00-02 adg02 0 2097152 0 - NDEV
dc vol00_dco vol00 vol00_dcl

v vol00_dcl - ENABLED ACTIVE 144 SELECT - gen
pl vol00_dcl-01 vol00_dcl ENABLED ACTIVE 144 CONCAT - RW
sd adg01-02 vol00_dcl-01 adg01 2097152 144 0 c1t1d0 ENA
pl vol00_dcl-02 vol00_dcl DISABLED NODEVICE 144 CONCAT - RW
sd adg02-02 vol00_dcl-02 adg02 2097152 144 0 - NDEV

v vol20 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol20-01 vol20 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-03 vol20-01 adg01 2097296 2097152 0 c1t1d0 ENA
pl vol20-02 vol20 DISABLED NODEVICE 2097152 CONCAT - RW
sd adg02-03 vol20-02 adg02 2097296 2097152 0 - NDEV
dc vol20_dco vol20 vol20_dcl

v vol20_dcl - ENABLED ACTIVE 544 SELECT - gen
pl vol20_dcl-01 vol20_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg01-04 vol20_dcl-01 adg01 4194448 544 0 c1t1d0 ENA

312

Point In Time Copies (Snapshots)

pl vol20_dcl-02 vol20_dcl DISABLED NODEVICE 544 CONCAT - RW
sd adg02-04 vol20_dcl-02 adg02 4194448 544 0 - NDEV
dd if=/dev/zero of=/dev/vx/rdsk/adg/vol00 bs=1024k count=10
dd if=/dev/zero of=/dev/vx/rdsk/adg/vol20 bs=1024k count=10
dd if=/var/tmp/c1t1d1s2 of=/dev/rdsk/c1t1d1s2 bs=128k oseek=1
vxdisk scandisks
vxdg -g adg -k adddisk adg02=c1t1d1
vxstat -g adg -r
vxrecover -g adg
vxstat -g adg -f ab
 ATOMIC COPIES READ-WRITEBACK
TYP NAME OPS BLOCKS AVG(ms) OPS BLOCKS AVG(ms)
vol vol00 11 22528 23.6 0 0 0.0
vol vol00_dcl 1 144 0.0 0 0 0.0
vol vol20 10 20480 19.0 0 0 0.0
vol vol20_dcl 1 544 10.0 0 0 0.0

Tracking changes of volume data when a mirror is temporarily unavailable is not only
useful in case of temporary disk outage. In order to keep a frozen volume data set, you do
not need to go back to the somewhat oversized snapshot functionality. Just set one plex
within the volume to OFFLINE state. Look at the following procedure to resynchronize the
offlined plex to the current volume data set in case you want to continue with it. Only
changed regions are synchronized.

vxmend -g adg off vol00-02 vol20-02
dd if=/dev/zero of=/dev/vx/rdsk/adg/vol00 bs=1024k count=10
dd if=/dev/zero of=/dev/vx/rdsk/adg/vol20 bs=1024k count=10
vxstat -g adg -r
vxmend -g adg on vol00-02 vol20-02
vxrecover -g adg
vxstat -g adg -f ab
 ATOMIC COPIES READ-WRITEBACK
TYP NAME OPS BLOCKS AVG(ms) OPS BLOCKS AVG(ms)
vol vol00 11 22528 20.9 0 0 0.0
vol vol00_dcl 0 0 0.0 0 0 0.0
vol vol20 10 20480 20.0 0 0 0.0
vol vol20_dcl 0 0 0.0 0 0 0.0

If you need to fall back to the frozen application data set:

vxmend -g adg off vol00-02 vol20-02
dd if=/dev/zero of=/dev/vx/rdsk/adg/vol00 bs=1024k count=10
dd if=/dev/zero of=/dev/vx/rdsk/adg/vol20 bs=1024k count=10
vxvol -g adg stop vol00 vol20
vxmend -g adg on vol00-02 vol20-02
vxmend -g adg fix stale vol00-01 vol20-01
vxmend -g adg fix clean vol00-02 vol20-02

313

VxFS Storage Checkpoint Behavior

vxstat -g adg -r
vxrecover -g adg -s
vxstat -g adg -f ab
 ATOMIC COPIES READ-WRITEBACK
TYP NAME OPS BLOCKS AVG(ms) OPS BLOCKS AVG(ms)
vol vol00 11 22528 20.9 0 0 0.0
vol vol00_dcl 0 0 0.0 0 0 0.0
vol vol20 10 20480 17.0 0 0 0.0
vol vol20_dcl 0 0 0.0 0 0 0.0

VxFS Storage Checkpoint Behavior9.8	
One of the most remarkable strengths of a VxFS storage checkpoint is its capability to avoid
copy-on-first-writes in favor of just a slightly modified metadata set. We already men-
tioned that under specific circumstances VxFS switches to copy-on-first-writes, and we
mentioned as well reasonable causes for that behavior. Let's test and discuss that topic!

We need four different types of write I/O operations onto a file system:

1.	 A file to be deleted (Delete.1k)

2.	 A file to be replaced by (new) content (Replace.1k)

3.	 A file to be enlarged (Append.1k5)

4.	 A file to be written by databases (DBIO.10m; the file remains at the same position
keeping the same size, but some blocks within it are replaced)

vxassist -g adg make vol 128m
mkfs -F vxfs /dev/vx/rdsk/adg/vol
mount -F vxfs /dev/vx/dsk/adg/vol /mnt
cd /tmp
mkfile 1k Delete.1k
mkfile 1k Replace.1k
mkfile 3b Append.1k5
mkfile 10m DBIO.10m
cp Delete.1k Replace.1k Append.1k5 DBIO.10m /mnt
ls -l /mnt
total 20488
-rw------- 1 root root 10485760 Sep 21 10:43 DBIO.10m
-rw------- 1 root root 1536 Sep 21 10:43 Append.1k5
-rw------- 1 root root 1024 Sep 21 10:43 Delete.1k
-rw------- 1 root root 1024 Sep 21 10:43 Replace.1k
drwxr-xr-x 2 root root 96 Sep 21 10:42 lost+found
mount -F vxfs -o remount /dev/vx/dsk/adg/vol /mnt
ncheck -F vxfs -o sector= /dev/vx/rdsk/adg/vol
[…]
UNNAMED 999 4 - - 0/3202-0/3203 /Delete.1k
UNNAMED 999 5 - - 0/3204-0/3205 /Replace.1k

314

Point In Time Copies (Snapshots)

UNNAMED 999 6 - - 0/3208-0/3211 /Append.1k5
UNNAMED 999 7 - - 0/16384-0/36863 /DBIO.10m
[…]
fsckptadm create CKPT /mnt
rm /mnt/Delete.1k
cp /tmp/Replace.1k /mnt
cat /tmp/Append.1k5 >> /mnt/Append.1k5
perl -e '
 $Block="x" x 8192;
 open(FH,"+< /mnt/DBIO.10m") || die;
 sysseek(FH,81920,0);
 syswrite(FH,$Block,8192,0);
 close(FH);'
mount -F vxfs -o remount /dev/vx/dsk/adg/vol /mnt
ncheck -F vxfs -o sector= /dev/vx/rdsk/adg/vol
[…]
UNNAMED 999 5 - - 0/5696-0/5697 /Replace.1k
UNNAMED 999 6 - - 0/5698-0/5699 /Append.1k5
UNNAMED 999 6 - - 0/3208-0/3211 /Append.1k5
UNNAMED 999 7 - - 0/16384-0/36863 /DBIO.10m
CKPT 1000 4 - - 0/3202-0/3203 /Delete.1k
CKPT 1000 5 - - 0/3204-0/3205 /Replace.1k
CKPT 1000 6 - - 0/3214-0/3215 /Append.1k5
CKPT 1000 7 - - 0/5712-0/5727 /DBIO.10m
[…]
mount -F vxfs -o ckpt=CKPT /dev/vx/dsk/adg/vol:CKPT /mnt_ckpt
ls -l /mnt*
/mnt:
total 20488
-rw------- 1 root root 10485760 Sep 21 10:50 DBIO.10m
-rw------- 1 root root 3072 Sep 21 10:50 Append.1k5
-rw------- 1 root root 1024 Sep 21 10:50 Replace.1k
drwxr-xr-x 2 root root 96 Sep 21 10:42 lost+found

/mnt_ckpt:
total 22
-rw------- 1 root root 10485760 Sep 21 10:43 DBIO.10m
-rw------- 1 root root 1536 Sep 21 10:43 Append.1k5
-rw------- 1 root root 1024 Sep 21 10:43 Delete.1k
-rw------- 1 root root 1024 Sep 21 10:43 Replace.1k
drwxr-xr-x 2 root root 96 Sep 21 10:42 lost+found

Examining the output of the ncheck and ls commands (especially the sector numbers
and the time stamps), we conclude:

1.	 The deleted file content of Delete.1k remains at the same location within the file
system (3202-3203), but is now addressed only by the checkpoint metadata. No
copy-on-first-write!

315

VxFS Storage Checkpoint Behavior

2. The original data set of the overwritten, replaced file Replace.1k remains as well
at the same location within the file system (3204-3205, 10:43), but visible only to
the checkpoint after being overwritten. The new data blocks of the new file version
(5696-5697, 10:50) visible to the active file system did not overwrite the previous
version. No copy-on-first-write!

3. The blocks used to store the two versions of the file Append.1k5 display a somewhat
tricky, but quite intelligent behavior. Recall that, except for very large file systems,
the default block size of VxFS is 1 kB. So, storing 1.5 kB of the original file Append.1k5
allocated two file system blocks at 1 kB size each (sector numbers 3208-3211).

UNNAMED and CKPT

3208 3209 3210 3211

Append.1k5

VxFS blocks of Figure 9-11: Append.1k5 before appending data

 Appending another 1.5 kB to this file enlarges the same file (inode number 6 remains
unchanged) to a size of 3 kB. The two file system blocks of the original file (sectors
3208-3211, the last sector was previously unused) are still assigned to the active file
system, so the first 512 bytes of the appended data are stored conveniently in the
unused sector of the second 1 kB block. For the last 1 kB of the appended data a new
file system block at a quite distant location (sectors 5698-5699) was allocated by the
UNNAMED instance.

UNNAMED

3208 3209 3210 3211 5698 5699

Append.1k5

UNNAMED VxFS blocks of Figure 9-12: Append.1k5 with appended data

The content of the second file system block of Append.1k5 in its original state was
copied to another location (sectors 3214-3215) and mapped by the checkpoint metadata,
while the first block completely unmodified remains visible through the active and the

316

Point In Time Copies (Snapshots)

checkpoint file system at the same time (not shown by the ncheck output).

CKPT

3208 3209 3214 3215

Append.1k5

Copy on first write
from 3210-3211

CKPT VxFS blocks of Figure 9-13: Append.1k5 (data appended in
UNNAMED)

The command fsckptadm provides an interface to track block changes and displays
block allocations by the file system instances:

fsckptadm blockinfo /mnt/Append.1k5 Ckpt /mnt
/mnt/Append.1k5: <offset, len, flag>
 <0k, 1k, >
 <1k, 0k, CHANGED>
 <1k, 0k, EXTENDED>
 <2k, 1k, EXTENDED>
fsckptadm blockinfo /mnt_ckpt/Append.1k5 Ckpt /mnt
/mnt_ckpt/Append.1k5: <offset, len, flag>
 <0k, 1k, >
 <1k, 0k, CHANGED>

It is indeed quite difficult to generate a satisfactory output even by executing
fsckptadm blockinfo. The second file system block (offset of 1k) was actually extended
by 512 bytes which is in case of an integer division indeed 0 kB (len of 0k), while the
first half of the block (512 B rounded down to 0 kB) effected a copy-on-first-write event
(<1k, 0k, CHANGED>).

To sum up: Extending a file system block invokes a copy-on-first-write in favor of
a preferably unfragmented active file (in spite of the fragmented allocation of the third
block).

4. Based on our experience with the latter file, we assume a comparable block allo-
cation policy in case of database-like I/O: The old block will be copied to another location,
before the new data will be written to the original block position, thus keeping the active
database file unfragmented. Our assumption is proved correct by a detailed analysis of the
output of the ncheck command above and the following fsckptadm command:

fsckptadm blockinfo /mnt/DBIO.10m Ckpt /mnt
/mnt/DBIO.10m: <offset, len, flag>

317

VxFS Storage Checkpoint Behavior

 <0k, 80k, >
 <80k, 8k, CHANGED>
 <88k, 10152k, >
fsckptadm blockinfo /mnt_ckpt/DBIO.10m Ckpt /mnt
/mnt_ckpt/DBIO.10m: <offset, len, flag>
 <0k, 80k, >
 <80k, 8k, CHANGED>
 <88k, 10152k, >

Copy on first write
from 16544-16559

UNNAMED

16384 - 16543 → ← 16544 - 16559 → ← 16560 - 36863

DBIO.10m

CKPT

16384 - 16543 5712 - 5727 16560 - 36863

DBIO.10m

VxFS block allocation in case of database I/OFigure 9-14:

